
M-IHTEA*T INS OISTRIBJTED NOS9OGNOM RMHE inEOEU
a YMSE PRO OYPES VOLUMIE 37U) NRSSMCHUET INST OF

TECH COMSIDOE At GPTM ET' ALL DEC 6? MIT-KIIISE-3

uIL iTMhhhhhhhhhF0hW/hl

2.0.

1II I .25 IH 4 11111_L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

VIP

0I II

Massachusetts Integrating Distributed3 Institute of
Teholg Homogeneous and

-Knowledge-Based eeokn usDtb e:
Integrated Information Pooye
Systems Engineering Pooye
(KBIISE) Project

Voiume 3

Amar Gupta
W) Stuart Madnick

SERIES EDITORS

a)

D 7

AA

pproed fvr pblicreela;3e

A

*ft** t~ f .

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

IREPORT NUMBER 2.GVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TTLE and ubtile)5. TYPE OF REPORT & PERIOD COVERED

Tntegrating Distributed Part of Final Report;

Homogeneous and Heterogeneous Sept. 86 - Jan. 88
Databases: Prototypes 6. PERFORMING ORG. REPORT NUMBER

____ ___ ___ ____ ___ ___ ____ ___ ___ ____ ___ ___KBTISE-3

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(ir)

Amar Gupta and Stuart Madnick DTRS5785-C-00083
(Editors)

3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Massachusetts Tnstitute of Technology
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Transportation Systems Center, December 1987

Broadway, NIA 02142 13. NUMBER OF PAGES

IT ~ *n~1~ ArFre 218 Pages
14. kW rSi dTfrn front N Gr~in Office) IS. SECURITY CLASS. (of thie report)

Transportation Systems Center, Unclassified
Broadway, MA 02142

I5a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Anproved For Public Release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different front Report)

IS. SUPPLEMENTARY NOTES

This volume is one of eight volumes prepared by M.I.T. for Department of

Transportation and Department of Defense (U1.S. Air Force).

19. KEY WORDS (Continue on reverse slde If necessary and identify by block numtber)

Tntegration, knowledge, databases, systems engineering,. methodologies,

in-ormation modeling, hc'tero~eneouis database systems-

20 ABSTRACT (Continue on reverse side If necessary and identify by block numtber)

This volume discusses key isstues relating to distribuited databases, and
nresents alternate methods For inteqratinig them together. It is divided
into Four parts. The first nart, "evolution Towards Strategic Anplications
orDatabases Through Comnosite InFormation ' vstcrns," divides applications
into Four cateeories:inter-cornorate, inter-divisional, inter-product, and

inter-model. The nrocess of evolution is described in terms of five stages:
separate systems, virtual-terminal driver, logical separation, physical

DD I 'OA17 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-014-6601
SECURITY CLASSIFICATION OF THIS PACE (When Daga Enir.u)

.,.kJ4ITY CLASSIFiCATION OF THIS PAGE(Whon Oate Entered)

separation, and specialized functional engine.

The second part, "Distributed Homogeneous Database systems: A Comparison
between Oracle and Ingres," compares commercial products in terms of the
levels of transparency and independence supported by them. Six properties
of transparency and five properties of independence are identified. In
Spite of significant research activities, neither of these products are abl
to meet all the requirements.

The third Dart, "Achieving a Single Model for Integrating Heterogeneous
Databases attempts to come up with a single unified model that encompasses
both the database issue and the communication issue. In the communication
area, there are types of standards: connection-oriented and connectionless.
In the database area there are multiple standards suited for different
environments.A single model that can consolidate these alternatives would
produce a more manageable situation.

The fourth Dart, "A Technical Comparison of Distributed Heterogeneous
Database Management Systems, " describes eight systems being developed
around the world. Because of the added complexity involved in translating
between multiple systems and multiple data models, distributed heterogeneous
database systems are more complex than equivalent homogeneous ones. While
all of these eight systems are able to do global retrieves, their ability
to perform global updates and other capabilities is varied.

SECuRITY CLASSIFICATION OF THIS PAGE(Ien Data Enterad)

INTEGRATING DISTRIBUTED
HOMOGENEOUS AND HETEROGENEOUS

DATABASES - PROTOTYPES

Amar Gupta
Stuart Madnick

Series Editors

Knowledge-Based Integrated Information Systems
Engineering (KBIISE) Report: Volume 3

Aa esion F or-
04- - -

NTIS ,&
DT It~

Massachusetts Institute of Technology

INSPECTED

6

- ~~ ~ ~ . VAX ' U U'U

INTEGRATING DISTRIBUTED HOMOGENEOUS AND
HETEROGENEOUS DATABASES - PROTOTYPES

About This Volume

This volume discusses key issues relating to distributed databases, and presents
alternate methods for integrating them together. It is divided into four parts. The
irst part,r'Evolution Towards strategic Applications of Databases Through

--'Composite Information Systems, divides applications into four categories: inter-
corporate, inter-divisional, inter-product, and inter-model. The process of evolution
is described in terms of five stages: separate systems, virtual-terminal driver, logical
separation, physical separation, and specialized functionalengine.

-The cond part, Distributed Homogeneous Database systems: A Comparison
between racle and Ingres, compares commercial products in terms of the levels of
transparency and independence supported by them.,, Six properties of transparency
and five properties of independence are identified. 'In spite of significant research
a j cher of these products are able tomeet all the requirements.

-The\hird art, 'Achieving a Single Model for Integrating Heterogeneous
Data ases attempts to come up with a single unified model that encompasses both
the database issue and the communication issue. In the communication area, there
are two types of standards: connection-oriented and connectionless. In the database
area there are multiple standards suited for different environments.) A single model
tht.can consolidate thesealternatives would produce a more able situation.

Th fourth part, A Tehnical Comparison of Distributed Heterogeneous Database .,
Management Systems, describes eight systems being developed around the world.
Because of the added complexity involved in translating between multiple systems
and multiple data models, distributed heterogeneous database systems are more
complex than equivalent homogeneous ones. While all of these eight systems are
able to do global retrieves, their ability to perform global updates and other
capabilitiesisvaried. , .. ,.- . . -' .. .

,7 ._4v. ,,b J'

Table of Contents

Page

SERIES EDITORS' NOTE 1

EVOLUTION TOWARDS STRATEGIC APPLICATIONS THROUGH COMPOSITE
INFORMATION SYSTEMS (Technical Report #4) 5

DISTRIBUTED HOMOGENEOUS DATABASE SYSTEMS: ,
A COMPARISON BETWEEN ORACLE AND INGRES (Technical Report #11) 31

ACHIEVING A SINGLE MODEL FOR INTEGRATING HETEROGENEOUS :F.
DATABASES (Technical Report #16) 127

A TECHNICAL COMPARISON OF DISTRIBUTED HETEROGENEOUS DATABASE
MANAGEMENT SYSTEMS (Teciinical Report #5,) 159

Knowledge-Based Integrated Information System Engineering Project: Volume 3
Amnar Gupta and Stuart E. Madnick, Editors
Copyright C Massachusetts Institute of Technology, 1987. :%

ZIP %

lr %IJQIV

DEDICATED0

TO

THE

NEXT

GENERATION

OF

PROFESSIONALS

LMS

1.

SERIES EDITORS' NOTE

This book is one of eight volumes published by MIT as part of the Knowledge-Based
Integrated Information Systems Engineering Project (KBIISE). In order to
; preciate the papers in this book, it is necessary to be aware about the theme of the
K ISE project, its major objectives, and the different documents that summarize
the research accomplishments to date.

Goal

The primary goal of the KBIISE project is to integrate islands of disparate
information systems that characterize virtually all large organizations. The number
and the size of these islands has grown over years and decades as organizations have
invested in an increasing number of computer systems to support their growing
reliance on computerized data. This has made the problem of integration more
pronounced, complex, and challenging.

The need for multiple systems in large organizations is dictated by a combination of
technical reasons (such as the desired level of processing power and the amount of
storage space), organizational reasons (such as each department obtaining its own
computer based on its function), and strategic reasons (such as the level of
reliability, connectivity, and backup capabilities). Further, underlying trends in the
information technology area have led to a situation where most organizations now
depend on a portfolio of information processing machines, ranging from mainframes
to minicomputers and from general purpose workstations to sophisticated
CAD/CAM systems, to support their computational requirements. The-tremendous
diversity and the large size of the different systems make it difficult to integrate
these systems.

Key Participants

The above problem is becoming increasingly evident in all large government
agencies and in large development programs. In the fall of 1986, the U.S. Air Force
(USAF) and the Transportation Systems Center (TSC) of the U.S. Department of
Transportation approached M.I.T. to conduct and to coordinate research activity in
this area in order "to develop the framework for a comprehensive methodology for 0
large scale distributed, heterogeneous information systems which will provide: (i)
the necessary structure and standards for an evolving top down global framework;
(ii) simultaneous bottom up systems development; and (iii) migratory paths for
existing systems."

Both USAF and TSC provided sustained assistance to members of our research team.
In addition, Citibank and IBM provided some funds for research in very specific
areas. One advantage of our corporate links was the opportunity to analyze and to
generate case studies of actual decentralized organizational environments.

The research sponsors and MIT agreed that in order to deal with the heterogenity
issue in a meaningful way, it was important that a critical mass of influential
individuals participate in the development of solutions. Only through widespread
discussion and acceptance of a proposed strategy would it become feasible to deal
with the major problems. For these reasons, a Technical Advisory Panel (TAP) was
constituted. Nominees to the TAP included experts from academic and research
organizations, government agencies, computer companies, and other corporations.
In addition, several subcontractors, the primary one being Texas A&M University,
provided assistance in specific areas.

NO

wi.l

Technical Outputs

The scope of the work included (i) technical issues; (ii) organizational issues; and (iii)
strategic issues. On the basis of exploratory research efforts in all these areas, 24
technical reports were prepared. Eighteen of these reports were generated by MIT
research personnel, and their respective areas of investigation are summarized in •
the figure on the opposite page.

The five technical reports, not represented in the figure, are as follows:

#1. Summary.

#2. Record of discussions held at the first meeting of the Technical Advisory Panel
(TAP) on February 17, 1987.

#3. Consolidated report submitted by Texas A&M University.

#21. Annotated Bibliography.

#23. Record of discussions held at the second meeting of the Technical Advisory
Panel (TAP) on May 21 and 22,1987.

#24 Contributions received from members of the TAP highlighting their views on
various aspects of the problem.

All the 24 technical reports have been edited and reorganized as an eight-volume
set. The titles of the different volumes are as under:

1. KNOWLEDGE-BASED INTEGRATED INFORMATION SYSTEMS ENGINEERING-
HIGHLIGHTS AND BIBLIOGRAPHY 5

2. KNOWLEDGE-BASED INTEGRATED INFORMATION SYSTEMS DEVELOPMENT
METHODOLOGIES PLAN

3. INTEGRATING DISTRIBUTED HOMOGENEOUS AND HETEROGENEOUS DATABASES -
PROTOTYPES

4. OBJECT-ORIENTED APPROACH TO INTEGRATING DATABASE SEMANTICS

5. INTEGRATING IMAGES, APPLICATIONS, AND COMMUNICATIONS NETWORKS

6. STRATEGIC, ORGANIZATIONAL, AND STANDARDIZATION ASPECTS OF INTEGRATED
INFORMATION SYSTEMS

7. INTEGRATING INFORMATION SYSTEMS IN A MAJOR DECENTRALIZED
INTERNATIONAL ORGANIZATION

8. TECHNICAL OPINIONS REGARDING KNOWLEDGE-BASED INTEGRATED

INFORMATION SYSTEMS ENGINEERING

Volume 2 contains the report submitted by Texas A&M and Volume 8 highlights the
views of members of the TAP. Activities described in the other 6 volumes have been
conducted at MIT.

-W S

EXPLORATORY RESEARCH EFFORTS 3.

Strategic
Goals 0 Inter-organizational BenefitsIILZI (#22 Osborn)

Composite * CIS Case Study
Info Sys -- Environment

(#6 Frank, Madnick, Wang)
Definition Organization (#12 Massimo)

-- Technology (# 14 Ri ncon)

0

Technical - Organizational
Obstacles • Obstacles

* Evolutionary Approaches * Inter-organizational Networks
(#4 Madnick, Wang) (#8 Nohria, Venkatraman)

* Prototype Distributed Databases 0 Standardization
-- Homogeneous (#11 Gref) -- Focused Standards 0
-- Heterogeneous (#5 Bhalla, Prasad, (#19 Trice)

Gupta, Madnick) -- PDES Case Study

" Integrating Image Databases and (#7 Kallel) ,,Knowledge ,,

Image Databases (#17 Apostle; #18 Kim) Its

-- Application Knowledge (#10 Habeck) S
* Object-Oriented Approach to

Integrating Database Semantics
-- Concepts (#20 Cooprider)

Implementation (#9 Levine)
-- Application (#13 Pocaterra)

* Communications 5
-- Integrated Comm with Database

(# 16 Kennedy)
-- Internet Integration

(# 15 Yoo)

Technical - Organizational
Solutions - - Solutions

% %

4..%

Acknowledgments

Funds for this project have been provided by U.S. Air Force, U.S. Department of
Transportation (Contract Number DTRS57-85-C-00083), IBM, and Citibank. We
thank all these organizations and their representatives for their support. In
particular, we are indebted to Major Paul Condit of U.S. Air Force for his initiative
in sponsoring this project, to Dr. Frank Hassler, Bud Giangrande, and Bob Berk of
the Transportation Systems Center (TSC) for their support and assistance, to
Professor Joseph Sussman, Director, Center for Transportation Studies (CTS) at MIT
for his help and encouragement, and to all the individuals whose results have been
published in this book.

We would welcome receiving feedback from readers of this book.

Amar Gupta and S.E. Madnick
Massachusetts Institute of Technology
Cambridge, Massachusetts.

%

S

• %.1

EVOLUTION TOWARDS STRATEGIC APPLICATIONS
THROUGH COMPOSITE INFORMATION SYSTEMS ,

STUART MADNICK AND Y. RICHARD WANG

One important category of strategic applications involves inter-organizational linkage (e.g., tying
supplier and/or buyer systems) or intra-organizational integration (e.g., tying together disparate
functional areas of an organization). Applications in this category require multiple very large
databases to work together to support the business activities Information systems in this category
are referred to in this paper as Composite Information Systems (CIS). Four categories of potential CIS
applications have been identified:

1. Inter-organizational - which involve two or more separate organizations (e.g., direct
connection between production planning system in one company and order entry system in
another company).

2. Inter-divisional - which involves two or more divisions within a firm (e.g., corporate-wide
coordinated purchasing).

3. Inter-product - which involves the development of sophisticated information services by •
combining simpler services (e.g., a cash management account that "'qmbines brokerage
services, checks, credit card, and savings account features).

4. Inter-model - which involves combining sepa.ate models to make more comprehensive models
(e.g., combine economic forecasting model with optimal distribution model to analyze the
impact of economic conditions on distribution).

The challenge is that it requires inter-disciplinary expertise (e.g., database management, data
communication, systems engineering, organizational development, and strategic management) to
develop and/or to deploy information resources within and/or across organizational boundaries to
facilitate corporate strategic goals

An approach is proposed in this paper as an interim step to meet the challenge. The essence of this
approach is captured in four CIS principles: 1) the explicit recognition of the CIS environment: 2) the
separation of data from processing: 31 the use of flexible tools; and 4) the use of interfaces that
facilitate data conversion and communication between processing components and databases 0

Migrating from a non-integrated environment to an integrated environment is usually a difficult,
expensive, and time-consuming process both due to technical dufficulties as well as organizastional
realities. Thus, an evolutionary approach is desirable, if not critical.In this research effort five stages
of evolution, which may co-exist. have been identified as follows:

1. Separate systems. This is the assumed starting point. The only communication among the
separate systems is through human users.

2 Virtual terminal driver. Existing terminal protocols are driven by a CIS executive. There is
no need to modify the svstems in order to interface with the CIS executive.

3. Logical separation. As new applications are developed the data and processing are logically
separated.

4. Physical separation. At this stage "file servers" and "data base servers" are used to physically
separate the processing from the data -- further encouraging sharing of the databases.

5. Specialized functional engine. As the technology becomes available, specialized high- 0
performance and high-availability data base machines can be used to replace the "data base
servers" and to serve a large and diverse community -- producing, in essense, an information
utility.

The opportunities for strategic uses of information technology in organizations is often blocked by the
difficulties of getting from "what is" to "what is desired." The five-stage evolutionary process
presented in this paper has been found to be effective in overcoming this problem.

?-_.
TECHNICAL REPORT #4

.*

%%S
*UU -

U~UU~URUMW1KXKb.MUKMA~K £MV W~. Wk NV N~UVNV MVInJ N~flC.~ W'J VXL~ V'.' V~. b ~ V~ ~ ~-. -

'V
6.

0
F

'K

0

I

%

0

0

0

A

.5.5
0
-"K---

A

0

'FF~K~

K,

'I.
K,

0
~

-K

-K

0

% %'K, F~- - -. F~ ~\' - ~ ~~%s

7.

1. Introduction
0

Significant advances in the price, speed-performance, capacity, and capabilities of

new information technologies have created a wide range of opportunities for

business applications. These opportunities can be exploited to meet corporate

information needs and to gain strategic advantage. In this paper, the concept of V

Composite Information Systems (CIS) is presented as an approach in the evolution

towards databases which can be deployed by companies to implement competitive

strategies. This approach provides a framework for the evolution of separate

systems to a more fully integrated system with value being added to the

organization at each stage.

2. Strategic CIS Opportunities Using Databases

Development and deployment of information systems for strategic computing

have become very topical [4, 5, 7, 13, 19, 21, 22]. Porter [20] found that

information technology is changing the rules of competition for U.S. industry by:

1) changing industry structure and boundaries; 2) dramatically reducing costs.

thereby, creating competitive advantage; and 3) creating new products and

services, sometimes spawning completely new business.

In the database arena, much research has been conducted on the design of large

capacity, cost-effective memory systems with rapid access time (10, 11, 17, 18,
231. In the private sector, commercial database machines, such as Britton Lee's

IDM 500 and Teradata's DBC 1012 [6], have been introduced. These ideas and

products can be very important for implementing systems to facilitate corporate -

strategic goals.

III 'I1 1
% %4

R&M M IM %,

8.

One important category of strategic database applications involves inter-corporate

cooperation (e.g., tying into supplier's and/or buyer's systems) or intra-corporate

integration (e.g., tying together disparate functional areas of a firm). Applications

in this category require a collection of databases to work together to support the

business activities. The authors refer to information systems in this category as

Composite Information Systems (CIS).

CIS applications require the deployment and/or development of sophisticated

communication networks to support connectivity among diverse applications. The

challenge is that this requires inter-disciplinary expertise (e.g., database

management, data communication, systems engineering, organizational

development, and strategic management) to develop and'or to deploy information S

resources within and/or across organizational boundaries to facilitate corporate

strategic goals.

Four categories of potential CIS applications have been identified: 1) inter-

corporate, 2) inter-divisional, 3) inter-product, and 4) inter-model. The following

subsections exemplify CIS applications that facilitate strategic goals.

2.1 Inter-Corporate Applications

American Hospital Supply (AHS), a manufacturer and distributor of a broad line

of products for doctors, laboratories, and hospitals, has since 1976 evolved an order

entry/distribution system that directly links the majority of its customers to AHS

computers. Over 4,000 customer sites are linked to the AHS system (i.e., an inter-

corporate application). As well as providing the customer with direct access to the

AHS order/distribution process, the system supports many customer functions,

such as inventory control. The AHS system has been successful because it

simplifies the ordering process for customers, reduces costs for both AHS and the

. %4
rr- -- ~

9.

customer, and allows AHS to develop and manage pricing incentives to the

customer across all product lines. As a result, customer loyalty is high and AHS,

which started out as a fairly small company, has gained a significant market share

[2].

2.2 Inter-divisional Applications

A major automobile manufacturer discovered, in the late 70's, that the average

cost of certain components used widely by many divisions of the company could be

reduced by two thirds if it could buy these components in bulk from a much

smaller set of suppliers. Cost savings would result if timely information

concerning each division's production plans and inventory levels could be obtained

so that a corporate-wide plan of purchase could be implemented (i.e., an inter-

divisional application). However, these divisional information systems were all

designed and maintained separately. A CIS capable of accessing all the pertinent

information across divisions would prov:de timely information to reduce ordering

and inventory costs.

2.3 Inter-Product Applications S

In 1977, Merrill Lynch established the Cash Management Account (CMA) which

shattered the traditional boundaries between the banking and securities

industries. The CMA account is an integration of brokerage service, VISA debit

card, and checking account (i.e., inter-product application). Implementation

required a complex interface of telecommunication and database management

systems. With the CMA account, Merrill brought in over 450,000 new accounts,

reaped over $60 Million a year in fees, and dominated the market for four years.

NJ0

10.

Competition from other financial services organizations did not begin to appear

until 1981 [24].

2.4 Inter-Model Applications

As part of energy policy analysis research at MIT, the MacAvoy-Pindyck gas

model, using the TROLL econometric modeling system, was developed to study the

impact of government policies on the demand, supply, and prices of natural gas. To

determine the optimal distribution schedule and its cost, the New England

Regional Commission was interested in combining its Decision Support System

(DSS), using the SEXOP linear programming optimization system, with the

MacAvoy-Pindyck system, as shown in Figure 1, to explore the impact of the

various government policies on profits. This was a major challenge since the two

systems had been developed independently with different tools, languages, and

databases.

2.5 Executives' Obstacle

Madnick and Wang [19] have interviewed hundreds of executives making IS

decisions and found that the majority of the executives are very concerned about

the need to deploy CIS to gain strategic advantage but have difficulty in

approaching the problem, recognizing the nature of the problem, and linking

issues such as technical incompatibility, organizational standardization, and

strategic allocation. In these studies, need for connectivity (a CIS subgoal) was

noted to be a major concern facing these executives. On a ten-point scale of

importance, it was rated 8.2 and over 40% of the executives noted that it was their

most important problem.

I MMM& %

11.

0

SYSTEM 1:

DEMAND p OPTIMAL GAS DISTRIBUTION DISTRIBUTION

SUPPLY AND COST LP MODEL

PRICES (IN SEXOP) D

SYSTEM 2:

POLICIES MACAVOY--PINDYCK DEMAND

NATIONAL GAS SUPPLY
SUPPLY

AND DEMAND ECONOMETRIC
PRICES

MODEL (IN TROLL)

(A) Independent Modeling Systems

SYSTEM 1: SYSTEM 2:

MACAVOY--PINDYCK - DEMAND OPTIMAL GAS DISTRIBUTION

POLICIES NATIONAL GAS SUPPLY SUPPLY DISTRIBUTION

AND DEMAND MODEL - PRICES AND COST LP

(IN TROLL) F] ASE MODEL (IN SEXOP) COSTSF DATABASE
DAASE

(B)Desired Composite Modeling System

Figure 1. An Energy DSS Example S

• " " I - I

12.

"As top managers have been. attracted to information as a powerful source, it is

only natural that information systems should get bigger," suggested Appleton [1]

in describing a project with estimates of 170,000 man-hours, $10 million, and five

elapsed years. "The project manager was bewildered in making the transition from

the old separate systems to the new desired system - how long it would take, how

much of the old systems he should leave in place, how does he continue to provide

value to his organization on an annual basis, etc.," said Appleton. The CIS

approach presented below provides a framework for the evolution of separate

systems to a more fully integrated system with value being added to the

organization at each stage.

3. Principles of CIS

As pointed out earlier, a composite information system is a system which

integrates "independent" systems which may reside within and/or across

organizational boundaries. By "independent" we mean systems which are (or

were) developed independently, usually by separate groups or organizations. It is

crucial to realize that the "independence" of these systems is not necessarily a
S

mistake. It is often driven by needs for division of responsibility, organizational

autonomy, and/or differences in objectives. However, it may be important to access

these systems in concert for certain purposes.

The traditional approach to system development, not sensitive to the synergistic

issue, tends to result in sealed systems as depicted in Figure 2. The process, model,

or tool of system 1 do not communicate with those of system 2. Cross-access of •

algorithms and data under this approach is practically impossible. The CIS

approach facilitates cooperation between systems by following certain principles

in the system design process. The essence of this approach is captured in the S

.p. *.

13.

SYSTEM 1 SYSTEM 2

PROCES..... POES

MODEL, OR - MODEL, OR

TOOLl 10 - TOOL2

DATABASE DATABASE

1.................................

"tSEALED" DIFFICULT
SYSTEMS COUPLINGS

Figure 2. The traditional approach to system development.

41;
IV~ -. R0

14.

explicit recognition of the following four CIS principles: 1) the CIS environment

principle; 2) the data separation principle; 3) the tool development principle; and

4) the interface composition principle.

3.1 The CIS Environment Principle

This principle addresses the need to explicitly recognize that it is important to

allow for the coexistence and usage of a variety of components (e.g., different types

of database systems, models, and applications). Actively and explicitly supporting

such multiplicity is a key goal of the CIS approach. 0

3.2 The Data Separation Principle

This principle provides a logical separation of the database from processing. The

separation enables two "windows" to be opened up, i.e., the process descriptor and

the database descriptor. The process descriptor describes the name, the

input/output data requirement, and other resource requirements of the processing

components. The database descriptor contains information about the data (e.g.,

data model, schema, access rights) in the database. These two descriptors can be

used by the execution environment to coordinate the interaction between the

processing component and the database.

Flexibility should also be carefully designed into the database so the information

in the database can be viewed from different angles to serve multiple purposes.

This allows the database to be accessed by other systems implemented

independently. Moreover, new types of information or relationships can be added

to the database easily as the database evolves.

Ow t'

15.

3.3 The Tool Development Principle

This principle advocates the usage of a set of software tools, such as special

purpose languages, to facilitate the construction of applications. For instance,

TROLL is an econometrics model construction language, and TSP is a time series

analysis model construction language. These languages provide more specialized,

higher-level primitives than traditional general purpose languages (i.e, they are
S

general purpose tools). By allowing applications to be consti ucted from the same

general purpose tools, inter-application communication protocols, which may be

cumbersome to implement in the general purpose languages, can be streamlined.

3.4 The Interface Composition Principle

This principle allows interface mechanisms to be built for data conversion and

communication between processing components and databases. Three types of

interface mechanisms, as shown in Figure 3, have been identified: BEIDGE.

LINK, and SPAN.

BRIDGE provides the necessary conversion of arguments to allow invocation of a

processing component from another. LINK provides a mapping between two

databases with dissimilar types of data models. SPAN converts the data format

retrieved from the database into the processing format (and vice versa).

The CIS Executive, as shown in Figure 3, coordinates the user, BRIDGE, LINK, 0

SPAN, the processing component, and the database. It directs the request of data

from a processing component to the target database, and invokes appropriate

interface routines, if necessary, to convert the data, and returns the result to the

16.

(EPLAN) (TSP)

-VECTOR -TIME-SERIES

PROCESS 1 PROCESS 2

OD BRIDGE

.- PROCESS

SPAN CISDESCRIPTOR

/ EXECUTIVEIN7....
-_--_--__-__--_--_

DATABASE

LINK
DESCRIPTOR

DATABASE DATABASE

1 2

(SQL) (IDMS)

-RELATIONALTABLES -NETWORK

Figure 3. The CIS approach to system development

17.

processing component. It also invokes a processing component on behalf of

another.

We have described the four CIS principles for strategic applications. These

principles have been applied to integrate separate systems using concepts such as

virtual machines, common systems, and special execution environments [141.

4 Evolving CIS: An Implementation Strategy

In the study of IS executives reported by Madnick and Wang [19], a three phase

evolutionary process of inter and intra organizational computing was identified, as

shown in Figure 4. Networking (phase 1) provides the necessary backbone

structure for the connectivity (phase 2) of diverse, often incompatible, systems

which in turn makes available opportunities for strategic computing (phase 3).

This paper focuses its attention on how an organization may engage in a staged

development of CIS to evolve through phase 2 (connectivity). Five stages of

connectivity have been identified as follows: 1) separate systems, 2) the virtual-

terminal driver, 3) the logical separation of processing from database, 4) the

physical separation of processing from database, and 5) the specialized functional.

engines.

4.1 Separate Systems (Stage 1) 0

The initial stage consists of a set of existing systems that either do not

communicate with each other or, more typically, only communicate via human

operators, as shown in Figure 5. The processing component and the database

component of each system are tightly coupled. The only existing "window" is the

user interface via the teminal.

5 ,m-

VAWZ.ADDED

coAGTM'v Strategic
ADVANAG Computing

Co n civt -0...d.

BACKBOOthe Applicationsaions
COORDUINTATON .ewrig m... Iac

STROTUP Coevte es.wonoua

FigureB4.Evlto /ftradItaOtrgApizationalCmptn
COMM NIC TIONNet orkig' - lipe~g.ter inalaccss

STRUC URE o remte sstem

Phas I Pase3 Phse

Report
JIV.

SYSTLZ1 SYTE

Figue 5.Sepaate,,, tems Stae 1

20.

4.2 Virtual-Terminal Driver (Stage 2)

The existing terminal protocols are used to interface existing systems, as shown in

Figure 6. Virtual-terminals are created which are indistinguishable to the system

from real terminals. The real terminals can still be used to perform their

traditional functions. A customer interested in his other composite account status

may invoke the CIS Executive which "drives" the virtual-terminals. The

Executive invokes each system (via its virtual-terminal) to obtain the necessary ..

information. Incompatibilities between the account data in the two systems are

resolved by the Executive which then presents a composite answer to the

customer.

As an example, a UNIX based professional workstation (or personal computer) has

been used in several recent applications to link separate systems. Using UNIX as

base for the CIS Executive and its CU command to simulate the virtual terminal,

it is possible to dial into multiple remote disparate systems. The UNIX

workstation appears as a virtual terminal to each of the remote systems. The

customer interested in his composite account status invokes a SHELL script which

sends the appropriate terminal sequences to each system (via CU), receives the

resulting responses (via UNIX "pipes") resolves any incompatibilities between the

account data, and finally presents the composite answer to the customer.

The virtual-terminal concept is very powerful in connecting separate systems.

Very few changes, if any, need to be made to the existing systems, and

construction of the Executive is relatively straight forward. Therefore, a CIS using

the Executive approach can be brought up in a relatively short period of time.

As a recent example, four banks in the mid-Atlantic states merged, each had

developed its own very different account status systems (e.g., Burrough, IBM, etc.).

1. 1116 f I ; N N N

2.p'

ii .. i, _ L _- -

len~nls ... /r,-- -
Virtual i
Terminals==

Real
Terminals
(optional) '

PROCESSING I PROCESSING 2
IiI I / . . . I

DA BSE~ DATABAS

II I II ,,,

SYSTEI I SYSTEMI 2

Figure 6. CIS Executive (Stage 2)
IIA

-"~~~ ~ 7 Nm,,..,. ,-.-,-.. '.,, ' >-.. '-X

22.

To maximize their new market power, it was critical to provide a single coherent

account status system rapidly. Using the virtual terminal concept, this was

accomplished within a month. This capability is quite important because it can

provide functional benefit to the organization quickly and, thereby, sustain upper

management support to continue the evolution.

The major drawback of the virtual terminal driver approach is that it remains

difficult to access the databases, which are sealed in each system, for purposes not

supported through terminal commands. Adding new functions and new types of

data is very cumbersome. This leads to the rationale for logical separation (stage

3).

4.3 Logical Separation (Stage 3)

As the organization evolves, one or more of the systems will need to be

significantly revised (and/or new systems developed) to meet changing business

needs and to keep the systems operationally efficient. At such a point, the CIS

principles described in section 3 can be applied. In particular, logical separation of

the processing component from its database should be designed into the systems.

as shown in Figure 7. By installing a database management package, the database

activities are offloaded from the processing component of the system. This

database is also made available to the CIS Executive through the database

interface. A dotted line connecting the CIS Executive to the database (see Figure

7) represents new uses of the database by the CIS Executive. Multiple subsystems

may go through this transformation as the system evolves.

%. 't
le.

*41.J lieI?

23.

cis

EXCUE

L I I

PRCSIG I PRCSSN

Fiur . Loia seaaIno rcsig rmdtbs Sae3

24.

Evolution up to this stage has been, in general, software based. The partitioned

processing and database components still run on the same computer. The next

stage involves increasing physical separation.

4.4 Physical Separation (Stage 4)

When new computing facility is needed to upgrade the system, two methods are

available for partitioning the evolving system: a) migrate a mixture of processing

and database components to the new computing facility, and b) partition the

processing and database components physically and migrate only one type of 0

components (i.e, either the processing components or the database components) to

the new computing facility. The second method is advocated for the following

reason.

On the one hand, one of the often neglected considerations in planning information

systems is the need to operate within an environment of "loosely coupled"

organizations. The proliferation of personal computers in most organizations is a

manifestation of the desire of individual departments or people to control their

own computational destiny. On the other hand, it is being rapidly recognized that

databases are important resources and the capability to provide timely access can

be crucial.

The method of physical separation of processing and database addresses both of

these forces by centralizing the databases onto "file servers" or "database servers"

that can be accessed by individually controlled (and "owned") application

processing elements --- which may range from personal computers to large-scale

mainframes, as illustrated iz, Figure 8.

2S.

LJ cis
EXECUTIVE

PROCESSING PROCESSING 0* DATABASE DATBAS

Figure 8. Physical separation of processing from database Stage 4)

26.

Furthermore, the separation of the application processing from the data

processing paves the way for progressing to the specialized functional engine

stage.

4.5 Specialized Functional Engines (Stage 5).

The increasing demand for information processing capacity has prompted

researchers to design large, cost-effective memcry systems with rapid access time.

One research direction involves database computers which are computers

dedicated and optimized for data management [e.g., 6, 12, 16, 17, 18]. Many of

these database computers have adopted highly-parallel, multi-processing

architectures to cope with the requirement of high throughput, high reliability,

and large storage capacity. Specialization enables the database computer to

handle search, retrieval, and storage of large volume of data more effectively, to

provide for adequate capacity to perform complicated data restructuring and

mapping, and to enforce security and integrity constraints.

Assuming that an organization has progressed to stage 4, as the technology for

database computers continues to mature, the organization can easily upgrade

system capacity by migrating the database management tasks performed on a

conventional computer to a database computer. Meanwhile, proliferation of

professional workstations and personal computers will continue to offload many .

processing tasks currently performed on a centralized computer. A picture of

information systems will emerge as depicted in Figure 9.

Many of the tasks performed by the CIS Executive could be migrated to the

database management system or the database computer, such as view mapping, 4
data format conversion, and report generation. These features simplify the task of I A

the CIS Executive which now may reside in the professional workstation or

*"4 .- .'v .

27.

cis
EXECUTIVE

Prcssn-Cmutr

PerProessin CompuesITer

PROCESSONA

PROCESS2COMPUTERS

Database Computers File Servers

Information
utility DATABASE 1

DATABASE 2

Figure 9. Specialized engines tfor processing, database and CIS (Stage 5'

28.

personal computer to coordinate access to the resources (processing and database)

of the network as well as to mediate steps of internal processing.

The database managed by specialized database computers and controlled by

information system specialists of various sub-units of an organization constitute

the information utility [3, 15]. The end-users, via their desktop computers, access

the information utility for data that is either directly usable, usable after further

processing by some processing nodes in the network, or usable after further

processing by the desktop computer. The CIS at this stage becomes part of the

organization's infrastructure to facilitate strategic goals.

5. Concluding Remarks

There are enormous opportunities for businesses to gain competitive advantage

through inter-corporate, inter-divisional, inter-product, and inter-model

applications. These opportunities for strategic uses of database technology in

organizations are often blocked by the difficulties of evolving the existing

information technology infrastructure in a rapid, yet non-disruptive manner. The

five stage evolutionary process presented in this paper has been found to be

effective in overcoming this problem.

The pioneer work on CIS began almost a decade ago [14]. In our recent work [8] ,

we have found that this architecture is especially effective in an autonomous,

evolutionary, and integrative information systems environment. These

preliminary results has provided a foundation for the study of even more

advanced applications and technologies to support Composite Information

Systems.

'U"?s

- !_ XA, d_11.KiL J

29.

References

1. Appleton, D.S.,"Very Large Projects," Datamation,January 1986.

2. Benjamin, R.I. et. al. 'Information Technology: A Strategic Opportunity,"
Sloan Management Review, Spring 1985, 25(3), p. 3-10.

3. Baum, R.I. and Hsiao, D.K. "Database Computers - A Step towards Data
Utilities," IEEE Transactions on Computers, Vol. C-25, No. 12, December
1976.

4. Cash, J. and Konsynski, B.. "IS Redraws Competitive Boundaries, "Harvard
Business Review, March-April, 1985.

5. Clemons, E.R., and McFarlan, E.W., "Telecom: hookup or lose out out,"

Harvard Business Review, July-August, 1986.

6. Computerworld "Database machine's appeal rising," May 20, 1985, pp. W-2.

7. EDP Analyzer, "The Push for 'Connectivity'," May 1986, Vol. 24, No. 5.

8. Frank, W.F., Madnick, S.E., and Wang, Y.R."A Conceptual Modelfor
Integrated Autonomous Processing: An International Bank's Experience,"
WP# 1866-87, Sloan School of Management, MIT, February 1987.

9. EDP Analyzer "The Push for Connectivity," May 1986, Vol. 24, No. 5.

10. Geist, R. M., and Trivedi, K. S. "Optimal Design of Multilevel Storage
Hierarchies," IEEE Transactions on Computers, March 1982.

11. Goyal, A. and Agerwala, T. "Performance Analysis of Future Shared Storage
Systems," IBM J.ournal of Research and Development. January 1984.

12. Hsiao, D. K. and Madnick, S. E., "Database Machine Architecture in the
Context of Information Technology Evolution,' Proceedings of the Third
International Conference on VLDB, pp. 63-84, October 6-8, 1977.

13. Keen, P.W., Competing In Time: Using Telecommunications for Competitive
Advantage, Ballinger, 1986.

14. Lam, C.Y. and Madnick, S.E., "Composite Information Systems - A New
Concept in Information Systems," CISR WP# 35, Sloan School of
Management, MIT, May 1978.

15. Madnick, S. E., "Trends in Computers and Computing: The Information
Utility," Science, Vol. 185, March 1977, pp. 1191-1199.

16. Madnick, S. E., "The INFOPLEX Database Computer, Concepts and
Directions," Proc. IEEE Comp. Con., February 1979, pp. 168-176.

yS

30.

17. Madnick, S. E. and Hsu, "INFOPLEX: Research in a High-Performance
Database Computer," IEEE Database Engineering, Vol. 9, No. 1, March
1986.

18. Madnick, S. E. and Wang, Y. R., "Modeling Multiprocessor Computer
Systems with Unbalanced Flows," Performance Evaluation Review, Vol. 14,
No. 1, May, 1986.

19. Madnick, S.E. and Wang, Y.R., "Key Concerns of Executives Making IS
Decisions," WP# 1861-87, Sloan School of Management, MIT, December
1986.

20. Porter, M. Competitive Advantage, Free Press, New York, New York, 1985.

21. Porter, M. and Millar, V.E., "How Information Gives you Competitive
Advantages," Harvard Business Review, July-August 1985, p. 149-160.

22. Rockart, J.F. and Scott Morton, M.S., "Implications of Changes in
Information Technology for Corporate Strategy," Interfaces, Vol. 14, No. 1,
January-February, 1984, pp. 84-95.

23. Trivedi, K. S. and Sigmon, T. M. "Optimal Design of Linear Storage
Hierarchies," Journal of ACM, April 1981, pp. 270-288.

24. Wiseman, C. Strategy and Computers: Information Systems as Competitive
Weapons Dow Jones - Irwin, 1985.

%

5%m

j.5.

L0

°p

>1,

31.

DISTRIBUTED HOMOGENEOUS DATABASE SYSTEMS:
A COMPARISON BETWEEN ORACLE AND INGRES

ROBERT W. GREF, II 0

Most large organizations have multiple databases for reasons of economy (i.e., smaller computers may
be cheaper to own and/or operate than a single large computer), organization (i.e., each group wants
to operate their own system), and geography (i.e., the various groups are geographically distributed
and wish to have their databaes nearby for performance, reliability, or security).

In this research effort the concept of distributed homogeneous database systems is explored. By
homogeneous we mean that the same, or very similar, database software is used at all sites. Two
recent commercial products, Relational Technology's INGRES/Star and ORACLE's SQL*Star, are
evaluated and compared. Key areas of concern in the design of distributed homogeneous database
systems are transparency and independence.

By transparency we mean that although the database is distributed, the user should be able to use it
as if it were a single database. Six properties of transparency are:

1. Retrieval transparency -- implies that the same results should be obtained regardless of the
site from which the retrieval command is executed. Both ORACLE and INGRES meet this
requirement.

2. Update transparency -- implies that the user can update the database from any site. Both
ORACLE and INGRES provide this capability.

3. Schema transparency -- implies that the result of a schema change command should be visible
at all sites, regardless of the site from which it was issued. Only INGRES provides this
capability.

4. Performance transparency -- implies that all sites should see comparable performance if the
same query is performed, this usually means that the system employs a global optimizer that 0
determines the best site for each operation to be performed and minimizes data transfer. Only
INGRES provides this.

5. Transaction transparency -- implies that a single transaction composed of multiple updates is
properly and efficiently executed against the correct sites automatically. Neither system
currently offers this capability.

6. Copy transparency -- implies that multiple redundant copies of data is supported and the -
system automatically maintains consistent values and efficiently makes use of these copies to
optimize performance and recover from failures. Neither system currently supports this
concept.

By independence, we mean that the system should be independent of external factors, such as (1) site
crashes, (2) recovery actions, (3) communication networks, (4) hardware and OS, and (5) specific 0
DBMS's used. In these areas of independence ORACLE was found to be more effective at present.

Although significant progress has been made in research on and implementation of distributed
homogeneous database systems, full realization of transparency and independence is still a major
research challenge.

TECHNICAL REPORT #11

%I

-I

11 11 1 %

lcw~gwrwnw

32.

N N

33.

CHAPTER ONE

INTRODUCTION

With the vastly decreasing cost of computers, there is a

trend toward greater decentralization of data processing in

most companies.[l] Thus, in most organizations today the

computing environment is extremely diverse. For example, it

is not at all uncommon to find large IBM mainframes, DEC

minicomputers, and IBM PCs within a single organization.

Within a large company, there are many specialized divisions

which solve their problems with a variety of different

hardware and software. Naturally, different types of

hardware, operating systems and networks lead to

incompatibility problems. Thus, "islands of information"

develop which make managing corporate resources extremely

difficult.
.

Managers would like to have a global view of all

corporate data. However, networking software only helps

solve a small fraction of this problem since it is only

possible to access one database at a time or upload/download

files.[2]

Distributed database technology is the new "hot" area ,

that attempts to solve the "islands of information" problem.
N^

34.

,

This technology makes it possible for organizations to

develop applications and share data across a wide spectrum of

machines as easily as if all the information was available on

a single

computer.[3]

Distributed Processing vs. Distributed Database

Sometimes the terms distributed processing and

distributed database are misinterpreted. Distributed

processing occurs when programs on different network nodes

coordinate with each other by sending messages to one

another. If you are a user of a distributed processing

environment you must know the database you are trying to

access and you must send messages to the other relevant nodes

to initiate your process.

In contrast, a distributed database takes care of

coordination issues so the user does not have to know where

the data is located. 4] Therefore, a distributed database is

different from traditional database technology in that it

provides a single view for the user to see all the data

stored within an entire network of computers.

Problems of Having Information on Separate Computers

V

J*'

*;5. a'

AI

There are four major goals of a distributed database

system which follow.

First, users realize that there is an enormous amount of

data within their organization. What they would like to be

able to do is to access the data as if it were a single

database.

Second, users want their information to be current.
0

Third, users would like to be able to access the data

without programming. That is, they would like an easy to use S

language in order to interact with the database.

Finally, users like to control the databases they

establish. By maintaining control of "their" data, they

insure the integrity of their database is preserved.[5]

These four goals lead us to consider what are the advantages

of using a Distributed Relational Database
Management System.

I.,

Advantages of Distributed Databases

There are five major benefits which a distributed RDBMS
-

provides which follow.

First, a distributed database tracks the location of the

/ .D~~ttCC..W E .. -' - ~0*
"I~~~~~~~~

N
. ~ P '~, t~If

- ~- w* *~- "t-

r-ar7 %KAr -Y

36.

data for the user and this provides universal access to the

information.

*A
Second, security and integrity are insured at each

site. That is, the security is maintained at the local level

by the "owner" of the machine rather than at a global level

by one database administrator (DBA).

Third, by using distributed systems it is possible to

add computers gradually. In other words, it is not necessary

to replace all your computers, rather, you can add computers

modularly as you need increased capacity/power.

Fourth, data throughput can be increased by two means:

(1) dividing up the work among several nodes and (2) greater
.%~

availability of the data through replication.

Finally, by replicating data you allow some part of the

network to fail and yet all the applications that need to

access the data will not crash.F6]

.4

Why Would an Organization Purchase a Distributed DBMS?

.4

There are three primary reasons why a firm might

purchase a distributed DBMS which are: Economic,

Organizational and Technical.

% % %
ju4

37.

Economic

Currently, many organizations have databases that are so

large that they cannot be run on just a single machine. At

the same time, the cost of smaller machines has declined

significantly making them competitive with large mainframes

(traditionally DBMSs have been run on larger mainframes).

Finally, the cost of communication equipment to link the

computers has also fallen in price.

Organizational

Most organizations that use DBMSs are both

geographically and organizationally distributed. It is often

the case that the various applications are developed

independently but at some point in time there is a need to

integrate the systems (perhaps a merger occurs). Thus, in

order to be able to model the organization effectively, DBMSs

must be distributed.i]

Technical

Because the data is located close to its users, data

availability and performance are greatly improved using a

distributed DBMS. Furthermore, if copies of the data are

used at different sites the impact of a machine failure is I

far less.[81
..

38.

Thesis Organization

S

The next chapter is a general chapter on Distributed

Relational Database Management Systems and associated

terminology. Chapter Three describes ORACLE's Distributed

Relational Database Management System. Chapter Four examines -

INGRES ° Distributed RDBMS. Chapter Five is a comparison

between ORACLE and INGRES' Distributed RDBMS. Chapter Six

steps back from the more technical evaluation and examines

what problems these systems solve, what problems they do not

solve, and what problems they introduce. Chapter Seven is a

mini-case study examining why a major international bank

chose distributed INGRES. Chapter Eight is a mini-case study

dealing with a major government research Laboratory which

uses distributed ORACLE.

U .

4.
"

0

39.

CHAPTER TWO

DISTRIBUTED RDBMS AND ASSOCIATED TERMINOLOGY

In this chapter, I explain three terms associated with

distributed relational database management systems which

are: Transparency Rules, Independence Rules, and

Concurrency.

Transparency Rules

Introduction

Both ORACLE and INGRES have released distributed

relational database systems. Each vendor means something

slightly different by the term transparency, so it would be

helpful if some rules could be used to compare these two

systems.

As described in Chapter One, a distributed database

should allow a user to access data contained in multiple

databases at different sites as if he was accessing a single

database. The user should not have to know the location of

the data he is accessing and this is called transparency.[9]

In order to help explain the six rules that deal with

40.

transparency, let's create an example using Boston, San

Fransisco and Dallas as three sites and defining two

relations which follow:

Boston: SUPPLIER (sname, status, city, partno)
San Fransisco: PARTNO (ppartno, color, weight)

Transparency Rules

There are six rules which are:

(1) Retrieval transparency
(2) Update transparency
(3) Schema transparency
(4) Performance transparency
(5) Transaction transparency
(6) Copy transparency

Retrieval Transparency

Retrieval transparency means the same results should be

obtained regardless of the site in the distributed network

where the retrieval command is executed. Thus, if the

following example is run, the results should be the same

regardless if executed in Boston, San Fransisco, or Dallas.

select sname
from SUPPLIER
where partno in

select ppartno
from PARTNO 0
where weight = 100

Update Transparency

This rule states that the update should not restrict the

user to updating (i.e. delete, insert, replace) at a

M 4

41.

particular site. Thus, regardless of which site the user

executes an update the result of the following example should

be correct:[10]

update SUPPLIER
set status = in stock
where partno in

select ppartno
from PARTNO
where weight = 100

Schema Transparency

The idea of schema transparency is that regardless of

which site you are at in the distributed system, the result

of the command is visible at all sites.

Two examples of this concept follow:

(1) Suppose we create an ALIAS for a relation:

alias for SUPPLIER at San Fransisco is SUPP

Thus, this alias SUPP must be valid in the
distributed database system at all 3 sites with a
single command.

(2) Suppose we issue a CREATE command in San Fransisco: S

create PART (name = part3, description = tool)

Again this PART relation must be visible at Boston,
San Fransisco and Dallas using a single command.

Thus, what is necessary to have schema transparency is a

coordinated data dictionary. If the distributed database

system did not have a true data dictionary, it would fail the S

test because it would be necessary to execute the schema

42.

command at each site.

Performance Transparency

Performance transparency states that performance should

be comparable regardless from which site the command is

executed.

The only way to achieve consistent performance results

is to utilize a distributed query optimizer. Thus,

regardless of where the command is executed, the access plan

will be independent and hence comparable performance will

result (except for transmission delays).[l11

Example:

select -uppliername
from SUPPLIER
where partno in

select ppartno
from PARTNO
where weight = 100

K

In this case, it is likely that the query optimizer wil l

first choose to execute the inner block of code at Boston and

then move the result to San Fransisco for additional

processing. In order to illustrate the situation without a

distributed query optimizer, let us consider the above

example executed at Dallas (without a distributed

optimizer). In this case, the entire relation SUPPLIER as

well as part of PARTNO would be moved to Dallas before any

processing of the command took place. Therefore, you can see

that the performance results could vary substantially without

* - - -. ~ -~40

43.

a distributed query optimizer because in some cases

performance could virtually mimic that of the distributed

query optimizer, whereas in the above case, there could be

substantially more variation. The conclusion one should draw

is that without a distributed query optimizer, the
'N.

performance depends on which site the query was executed at.

Transaction Transparency

The transaction transparency rule states that when a

transaction (which may consist of many query language

commands) contains multiple updates, the transaction must be

able to be executed by the distributed database system.

Basically, the system should act like one-site transaction

systems. That is, a one-site transaction system requires

that a transaction must be serialized in order to avoid

problems with other concurrent transactions.

Copy Transparency

The copy transparency rule states that a distributed

database should support multiple copies of objects so that a

high availability is achieved for the user which results in

better retrieval performance. Thus, if the system crashes, a

redundant copy can be used until the failure is repaired. It

is the responsibility of the data manager to set up some

scheme to address the problems associated with redundant

copies, such as: (1) how to update multiple copies, and (2)

how to restore operation after a system crash.[121

Vl
p mr 9 N

44.

Independence

Introduction

Independence Rules like Transparency Rules should be

used to help judge the "goodness" of a distributed database

system.

There are five rules which are:

(1) Crash Independence
(2) Recovery Indepedence
(3) Network Independence
(4) Hardware/OS Independence
(5) DBMS Independence

Crash Independence

The crash independence rule states that if a crash

occurs in a distributed database system, that it should

effect the availability of data only for data residing at

that node. For example, if machine A crashes, machine B

should be unaffected unless it needs to access data from

machine A.(131

Recovery Independence

This rule states that if a system crashes, it should be

able to recover automatically.

Network Independence

The network independence rule states that the

45.
L

distributed database system can operate across any networks

that are available. That is, it should be possible for the

user to develop custom protocols so that even networks not

directly supported by the DBMS vendor can be used.

Hardware/OS Independence

This rule means that the distributed DBMS should be

available for a wide range of hardware (from PCs to

mainframes) and operating systems.J141

DBMS Independence

The DBMS independence rule means that the distributed

DBMS should support other common DBMS software, such as DB2

or SQL/DS.[15]

Concurrency Control

Introduction

Both ORACLE and INGRES are multi-transaction systems.

In a multi-transaction system many transactions may be

happening concurrently. Thus, it is possible that one

transaction might interfere with each other and therefore, it

is useful to look at how a distributed database system

handles concurrency issues.l16] 14-

Locking

In a distributed system, many transactions may be taking

46.

place at the same time and thus, it is possible for one
1W

transaction to interfere with another. For example, imagine

that an update is issued to record #1 while at the same time

a transaction is retrieving record #1. A mechanism to

prevent such a situation from occurring is called locking.

Thus, one transaction acquires a lock on a particular action

so that another transaction cannot occur until the lock is

released. [17]

Locks solve a great many problems but also create

problems as well. For example: Suppose a transaction #1

must acquire two different locks, A and B. Let's assume lock

B is not yet available, so transaction #1 locks A and waits

for B to be released. At the same time, transaction #2 does

not realize that transaction #1 has locked B and is waiting

for lock A to be released. This situation is called a

deadlock since both transactions are waiting for each other

to complete. N

Introduction to Figure 1
Figure 1 is a comparison between distributed INGRES and

distributed 04.E based on thirteen categories which I feel

are important when considering a distributed database system.

In Chapter Three, I go into detail on the items

mentioned in the INGRES column of the table. In Chapter

0.

M711 - - k -7 W

47.

Four, I expound 'more fully on the ORACLE column of the4.

table. Then, in Chapter Five, I give my opinion on each of

the thirteen points.

0%

"A0
gagm &I;&a

48.

INGRES VS. ORACLE -figure 1.

%. 4.. %

I PEATURE/FUNCTION I INGRES I ORACLE I EVALUATIONI

4 1) T ranspa rency IIII
I Rules IIIINGRES is betcter as for I
I - Retrieval I yet Iyes las transparency rules oael

I Update I Yes IYes looncerned. I
I -schm Yes INo I I
I - Performance I Yes INo IORACLE is better with I
I - Transaction I No INo Iiegrd to indepeden-ce I

--Copy I No INo Irules.I

I Independence IIII
RulesIIII

I - Crash I Fair I Excellent II
I - Recovery IFair I Excellent II
I - Network ISupqports only 2 I Sup~ports Many
I - IHarcd4re/OS I Fair I Excellent II
I DOBMS IFair I Excellent II

------------ ---------- --------------- -------------------------
1(2 1Concurrenocy lReaders block lReaders cio not blockl~y personal preference N
I Control 1writers & writers lwritetrs I writers dolis record level locking I

IIblock readers. Inot block readers. Isince it is more specifici

I I I land would result in feweri

I IINGRES uses page (ORACLE uses record Ideadlock situations. I%
I level locking. Ilevel loeking.

I I III
IlEnabling read IORACLE pr-ovides readi
I consistency Iconsistemcy without I

I lincreases lock lincreasing lock II
1 frequenocy. Thus, [frequency.II
I sacrificesIII
IIconcurrenocy.III

I III
I ------------------- I-------------------I-------------------I------------------------ I
1131 Query Optimizer IINGRES has an IORACLE uses A.I. Moth detabase% offer I
I Features lelaborate query Ito help aid in Igood query optimizers. I

Iloptimizer based on Iquerying. I I
I statistics. I I I%

I I III
IIINGRES sees their I II4

Iquery optimizer as &II
Imajor strength. II 0

---------------- -------------------- -------------------- ------------------------- e%
1(41 Use of Personal IINGRES has recently IPC is very IINGRES PC version %

I computers Ireleased PC version lintegrated in 15.0 is faster than S

%V 2

49.

INGRES VS. ORACLE - Figure 1.

FEATURE/FUNCTION I INGRES I ORACLE EVALUATION I

I=I IORACLE. Can join IORACLE version 4.0. I
l Have choice of 2 Itablos on PC with I,
Idifferent interfacesltables on host in IORACLE seems to offer a I
Iyou can use: regulerIORACLE. PC Port is more fully functional I

IINGRES or PCLINK. Ifully functional version. I
I IORACLE. I I
In bendlrk tests, I I I

I IINGRES S.0 outper- III
Iformed ORACLE 4.0. 1I I

II I II
lOnly have B-TREE I I
Ifile access on PC. I I
I I I

I ------------------- I-------------------I-------------------I------------------------I
I(S) Compatibility IINGRES claims to be IORACLE made the IORACLE seems to offer I

Ifully ANSI SQL Idecision early on tolmore here since it has I

I Icompatible. lbe ANSI SQL Ibeen fully SQL compatiblel

I Icompatible. Isince it began. I

I I I I

I ------------------- I-------------------I-------------------I-----------------------I I

If6) Portability lRurns on IBM VM/CMS, IORACLE available on IORACLE seems to have the I
IDEC VAX/VMS, IBM PC,IIBM V/CMS, Various Jadvantage here - it is I

12 dozen Unix lUnix, IBM PCs, IBM Imore portable and run~s oni

1 jmachines. IMS/SP, DG AOS/VS, Imore systems than INGRES. ,

I IVAX/VMS, Apollo I I

I Dom in. I I
I II

--------- -------------------- I-------------------- -------------------- ------------------------- I
1(7) VMS System IINGRES has UNIX Ioth systems are good. I

I Interface lorigins - badly I I
I Iported. I ORACLE does takeI

I I ladvantage of a variety .

IRequires 2 tasks fori lof VMS facilities and

leach user (due to IORACLE takes lutilities and achieves I

I pipes). ldvantage of varietylgood performance. I0
I I lof vYM system I I

I IINGRES does not havelutilities. Example: JHowever, INGRES uses I
Is shared buffer IORACLE has shared Inative date types - more I
Ipool and no shared Ibuffer pool and Ihighly tuned in thisI

I code. Ishe-ed code. Iregard. Also, makes use I

I I lof VMS distributed lock I
IUses native data IDoes not use native Imanager. .

I Itypes. Thus, need Idata types. I I

I Ito execute far less I I I
I linstruction sets. I I

% %

% I %

• I+ - = w+ " ' '% = "v %' " " """# * "'- -=.r '
"

'.P ''" .""- "" " - -" -- "- -.S

50.

INGRES VS. ORACLE - Figure 1. 06

FEATURE/FUNCTION INGRES I ORACLE EVALUATION I

IVHS distributed IDoes not use VHS I, l

Rock mnrgmr built Idistributed lock

Iinto product. Imenager.
I I

its) IBM V/CS IINGRES only recentlylORACLE uses shared IINGRES is slower but _
Ientered this merket. Iglobal area (SCA) tolmore secure than ORACLE

I Imximize perforsmane Iunder IBM VM/CMS. I
IINGRES uses lHowever, security

tminidisks concept. Imay be an issue

I I lunder IBM VIVCMS.
III I

---------------- -------------------- -------------------- ------------------------- I
(9) Performance IINGRES has file IRACLE uses only 11 tend to believe ORACLE I
I Related Issues access methods Ireg-I9-TREE file access Iis more performance

lular and compressed Imethod. loriented than INGRES,

Iversions): I ihowever, INGRES does havel
IISAM, HASH, HEAP, I Imore file access I
ISORTED HEAP, and I Imethods. ,

II-TREE. I
I I III

Can use only B-TREE ISupports nulls - cani

I Imethod on PCs. Idifferentiate I
I 1 Ibetween nulls, I

Does not support Iblanks end zero I
Inulls. ivalues. I

I ILimits tables to IRelation can have I
1127 columns and rowslunlimited numuber of I

Ito 2,008 bytes & Irows and up to 255 I

Idoes not support Icolumns. I,
Ilong text. I I
I IORACLE supports longl

I Itext. I 0%,

IINGRES allows you tol I I
Ilopy records in lHas an array inter- I
Ibatch. |face which allows I

Ito copy records in I I
Ibetch. I
I I

I I IORACLE has an inter-I

Inl sort. 1

IINGRES can use only IORACLE can use
lone index to processlnmultiple indexes to I.I

I query. process a query. II

,0

51.

INGRES VS. ORACLE Figure 1.

FEATURE/FINCTION I NGRES ORACLE I EVALUATION I

---------------- -------------------- -------------------- -------------------------I
1(101 Query Language SQL SQL Ilany users do find QUEL I

I QUEL Ito be more powerful than I
I I IISQL. I

I IINGRES was not ANSI IORACLE made the I I

I IS*L compatible. Istrategic decision ISQL has been adopted by: I

I IThey claim they are learly on to be ANSI [ANSI, the database I
Inow. ISQL compatible. lindustry, and database I

I I |users as the standard I

Ilestricition IORACLE SQL has Iquery language. I

Ilinabilityl to Isigiificant, I I

Ihandle VAX packed Ipowerful extensions I believe INGRES SQL has I

Idecimal format. Ito ANSI SQL. Iseveral idiosyncrasies. I

IExample: no null support.

IIII It

1I--------------- -------------------- --- I
Il(1 4 GL Tools IPowerful, fast £IORACLE has a varietylboth systems offer good

leasy to use set of lof tools available. Itools. Some users would

[tools. Ilike to be able to use I

I I I* more user-friendly I

IINGRES users really I Iinterface similier to theI

Ilike the 4 GL Tools. IMacintosh. I

II I I I
I ------------------- I-------------------I-------------------I------------------------I
1112) Security IDoes offer a Provides a security |Overall, ORACLE seems I

I security audit audit facility. Ibetter in this regard. I

I Ifecility. I I 1 0

I IORACLE allows you tol I
I ITable-by-table Ihave view isolation I I

I Ijourmaling. land protected I I

I tables. I I

IAudit log right in I I I

Idictionary. I I I

I ------------------- I-------------------I-------------------I------------------------I
1(131 Network SupportIINGRES supports IORACLE supports IORACLE is superior in

I IDECNET and TCP/IP. IDECNET, TCP/IP, Ithis regard. Supports I

I IRS 232 asynchronous Imuch larger variety than I

I I IM comminications, IINORES. I

1 13270 PC/Irma I

I IProtocol, EtherNet I

ILAN with TCP/IP, I I
liand ORACLE supports I I

% % %

~~~~~~~~~~~ %~%\r~ W ,%~C . %

5. ?rZ2-



52.

IRES VS. ORACLE - Figure I.

IFEAflME/VUICTION I INGRES I ORACLE I EVALUATIONI

5 1 Icoustauers who went I
I Ito dmvlop custom II
I Ipuaiocals.II

------------- I-------------------- I-------------------- I-------------------------I

%

%S



53.

CHAPTER THREE

ORACLE DISTRIBUTED RDBMS

Background On ORACLE Corporation

ORACLE was founded in 1977 and in 1979 they introduced a

commercial relational database management system

(RDBMS).[18] ORACLE introduced their RDBMS based on IBM's

Structured Query Language (SQL) database language three years

before IBM released its SQL/DS in 1982 and DB2 in 1985.[19]

Since 1979 it has been installed in 4,000 sites worldwide and

over 10,000 personal computer copies have been sold. Since I

ORACLE was developed using the language C and all versions

are ported from the same source code, it is easy to move

ORACLE among different systems. 20] Thus, ORACLE can be run

on a wide variety of mainframes, minicomputers and

microcomputers.

ORACLE has recently increased the performance of their

relational DBMS significantly as illustrated by an up to 20:1

increase in the performance of certain queries in Version 5

compared to Version 4. This increase was achieved primarily

through the following three product enhancements: (1)

significant performance improvement in OR operator

processing, (2) a faster sort/merge routine for processing

Join and group by queries, and (3) a new array interface



54.

which allows transferring many rows at a time rather than

just a record at a time. Thus, these three new features

speed query processing. In addition, the array interface and

the sort/merge routine increase the transaction processing

performance. (211

ORACLE offers far more than just a relational DBMS.

ORACLE offers several interfaces from which a user can work

with the database, ranging from one intended for novice users

to an advanced programming interface for MIS professionals.

Regardless of the interface chosen, the end result is that

ORACLE produces SQL queries which are processed by ORACLE.

ORACLE offers a variety of other options such as SQL*Forms,

an ad hoc data and reporting tool. Another option offered is

SQL*Net which provides network communications. ORACLE also

supports language interfaces for Cobol, Fortran, Basic,

Pascal, PLI and Ada.(221

In 1986, Oracle Corporation announced SQL*Star, a

distributed relational DBMS. SQL*Star makes it possible to

distribute databases among both ORACLE and non-ORACLE DBMSs.

The foundation of the SQL*Star package is SQL*Net along with

the protocol set.

General Advantages of ORACLE



55.

First, ORACLE has a fully functional microcomputer

version of their system. The personal computer version of 0

ORACLE requires 512 K, a hard disk, and DOS 2.0 or

later.[23] This is a great advantage since it is possible to

have a common system run on mainframes, minicomputers, and

microcomputers. Thus, it becomes possible for a user to

develop an application on a micro and run it on a

minicomputer or mainframe.[241

Second, the user and the vendor benefit from the fact

that ORACLE was written in C. This makes it quite easy for

ORACLE to work on a variety of hardware. Therefore, ORACLE

is available to a large number of users.

Third, users benefit by ORACLE's standard ANSI

structured query language (SQL). ORACLE is plug compatible

with SQL/DS and DB2 and they offer additional benefits over

SQL/DS and DB2, such as portability.

Fourth, a major benefit provided by ORACLE is the

introduction of SQL*Star.[251

SOL*Star

SQL*Star is a family of products which include

SQL*Connect and SQL*Net products which form a distributed



56.

RDBMS. SQL*Star allows you to create applications on one

computer and access your data from other computers (see

Figure 2). Thus, SQL*Star gives the user the impression that

he is dealing with a single database. SQL*Star has what is

known as an open architecture and thus allows mainframes,

minicomputers and personal computers to be tied together

saving on storage costs as well as providing easy to use

interfaces.

SQL*Star provides three types of independence that make

it easy to use, which are: location independence, network

independence and DBMS independence.

Location Independence

This feature allows the user to perceive the data as

existing in a single database. That is, SQL*Star takes care

of locating your data and figuring out how to get it. For

example, your data could be spread among many different

machines at many different locations and SQL*Star would take

care of finding it and retrieving it (see Figure 3).

Network Independence

Network independence is provided by SQL*Star which

allows you to access your data from any computer in your

organization's computer network.

DBMS Independence



57.

PC in Sales OfficePrvt
Database

Headquarters Shared
System Database

Figure_2



SQL*Star
Open System Distributed DBMS

LAN

:F2 I RACLEORACL

Figure3

N' N5



59.
S

SQL*Star's open system architecture allows the system to

be portable. Thus, it is possible to distribute your data

not only on ORACLE databases, but also on DB2 and SQL/DS

databases. (26]

At the heart of SQL*Star is SQL*Net which is described

below.

0

SOL*Net

What is SOL*Net?

ORACLE's SQL*Net Users Guide says, "SQL*Net allows

applications to reside on a machine other than where the

database is located, and provides a means of moving data from

one node to another on the network" (see Figure 4). It is

possible for ORACLE applications to retrieve data from a

remote location using SQL*Net. Also, one can with a single

SQL statement reference multiple nodes and do joins across

the network.127]

SQL*Net Architecture

SQL*Net is able to do distributed processing by using

both multi-node network communication and process-to-process

communications. Thus, ORACLE uses a two-task architecture

which means that the user task is a separate process from the

server task. The user task and the server task communicate



60.%

0

SQL v-Net
N

PC
Workstation

Centrlize

Databse Manfram

%r p

Fi-ure 4

%g

ZOO'



61.

with one another [via interprocess communication support by

the operating system] to complete a single job (see Figure

5).[281 Even when ORACLE runs on a single machine, the

two-task architecture is maintained by treating the

application as a front end process and the ORACLE kernel

functions as the back end process. If two processes are

running on two different machines, then they communicate with

one another via communication protocols supported by

SQL*Net. One task is the server and the other task is the

client. The client is the application program and the server

is the ORACLE kernel.

Under ORACLE's terminology, the host is the machine

where the database resides and runs the ORACLE kernel thus

supporting the server. The machine where the application

resides is called the client. However, it is possible for a

machine (example: a VAX) to be both a client and a server.

In the case of a single user system (example: a PC), it can

only be a client (see Figure 6). Please note that it is

possible to put an application as well as the application

database on a PC but still look up data on a mainframe using

ORACLE. Because the PC is a single user system, it is not ,v.

possible to query your database on the PC and at the same

time have someone dial into your PC to query your database.

However, under Xenix which allows a multi-user system, it is

possible to have the PC be a server. The following table

illustrates the various possibilities:[29]

• %z %NV



62.

Client Node Server Node

ORACLE ORACLE
Application DBMS

ORACLE
OtherServer

SQL*Net SQL*Net

Driver Driver

Communications Communications
Package Package

Figure 5 WN

% %

ILI"



! - ! - -- -

63.

ENVIRONMENTS SUPPORTED BY SQL*NET S

Client Server Protocol
_C____________ Protochono
PC/MSDOS VAX/VMS , AsynchronousPC/MSDOS DG/AOS/VS Asynchronous

PC/MSDOS Various Unix Asynchronous
PC/MSDOS IBM/VM/CMS Asynch, 3270
PC/MSDOS IBM MVS/SP Asynch, 3270
Various Unix Various Unix TCP/IP
VAX/VMS VAX/VMS DECNet

*4, '~

'.

., ,e6

Sa,

: ,V.

• .. % .- I
1 ,4S, 'r.'.},'/''2=='-.' _' _ %' .

",  
2 .' 2- '. , =. ,:2.. _.,_. . ,'- ", /'.', '-.'.. " ".r-.'.-'" ";'."": . _,r " "" ";". " r ".' . %* 5%.

) g 4, , . ' =9 '.'_.''' ", " - :.. J't '''-. , --- "- '' " -""" ".'" "." -Fi-g " "- - -".-re" 6.,."V' i



64.
0

IS

-------------------------------------------------------------------
I Machine I Client I Server

Personal Computer Always Only under Xenix

Minicomputers Yes Yes

Mainframe Possible Usually

0
Restrictions of SQL*Net

There are two limitations of using SQL*Net.

First, a single transaction can only update a single

node. What I mean by this is that while an application may

query several nodes, a single transaction requiring an update

can affect only one node. For example, one SQL statement can

refer to only one database (think of 1 SQL statement = 1

transaction). For example, it is not possible to issue the

command: update all parts by ten percent in a single SQL

statement if parts is found on several databases.

Second, SQL*Net does not support distributed •
. '-'

transactions due to the fact that each transaction can affect

only one node. Therefore, although an application may update

several different nodes, the commits and rollbacks for each

site are done independently.

. .. .'... - v.". -. " " ., " . ,--. ,



65.

Advantages of SQL*Star

In addition to the five advantages of a distributed

database that were mentioned in Chapter One (see Advantages

of Distributed Databases), SQL*Star also provides the

following two advantages:

First, since ORACLE's distributed database system uses

the site autonomy approach rather than INGRES s central

dictionary method, it is likely that ORACLE will be

compatible with IBM's directions in distributed databases.

Second, the site autonomy approach has the advantage S
that it is not dependant on a central node should the system

crash. INGRES/STAR is dependant on a centralized data

dictionary and thus it the particular machine that held the

data dictionary crashed, all distributed access would be

Impossible.I

Concurrency Control

In ORACLE, readers do not block writers and writers do .

not block readers.

ORACLE LOCKING

ORACLE uses record level locking. Record level locking
. -%..

V, W. RJ

.:% IL
- . .; - , ,,' -. . . . . .. .. ,.'.,



66.

has advantages associated with it as well.

S

First, it seems to offer higher security. For instance,

when reading, the read level locks are not shared. Thus, the

locking is done at a finer level and is much more specific

than page level locking.

Second, there is a problem under page level locking when

users access the same page and one person wants to update

this same page. This can result in deadlocks, which take

time to detect and hence lower performance in these cases.

There are two strategies for dealing with deadlocks.

First, you could decide to prevent deadlocks before they

occur. But this strategy requires much locking and releasing

of locks which causes a degradation of performance. Second,

you could allow deadlocks to happen since they occur

infrequently, but have an automatic deadlock detection and

recovery scheme. This is the method chosen by INGRES and

ORACLE. [301

Query Optimizer Features

ORACLE has incorporated artificial intelligence in

Version 5.0 to help aid in querying. This query optimizer

~@



67.

allows the system to find an efficient method of moving

around a database. The way the query optimizer works is that

it tries to minimize the number of retrieval requests and

utilizes all available indexes in order to proceed as

efficiently as possible.

Also, ORACLE's method of SQL allows users to update

tables with data retrieved directly by a query, thus

enhancing query performance. This is accomplished with the 1
S

SET clause by nesting queries with an UPDATE command. Thus,

the SET command permits users to join the result of several

queries into a single result. Also, ORACLE supports MINUS

and INTERSECT operators in addition to the UNION operator

(which is in DB2). The INTERSECT operator retrieves only 4 -

those rows which are common to the two query results. MINUS

operates by returning the result of these rows retrieved by

the first query which are not found in the second query.[31] X

Use of Personal Computers

ORACLE provides a fully functional PC version which

requires 512K RAM, a hard disk drive, and DOS 2.0 or later. .

ORACLE's PC product is fully compatible with IBM mainframes

and SQL/DS and DB2 systems.[32] Thus, the ORACLE system is

especially good if it is necessary to interface within SQL.I'

with minicomputer or mainframes.r331

%. I - _ ,



68.

Compatibility

ORACLE made the decision early on to use IBM's

structured query language as its user interface. This proved

to be an extremely good decision as in 1986 SQL won wide

acceptance in the marketplace.

Portability

ORACLE's SQL*Star is available for: IBM VM/CMS, various

Unix, IBM PC's, IBM MVS/SP, DG AOS/VS. ORACLE provides

excellent portability by writing their system in C, thus

minimizing the cost of transporting to other machines.

VMS System Interfaces

ORACLE takes advantage of a variety of VAX/VMS

facilities and utilities to enhance its performance. For

example, ORACLE uses a shared buffer pool in order to avoid

an excessive input/output load.

On the downside, ORACLE does not use the native data

types of the VMS system because ORACLE strives for

portability of their system and thus they use their own data

types, thus, ORACLE must execute more instructions.

',.



69.

IBM VM/CMS

ORACLE maximizes their performance under the IBM VM/CMS

operating system but it is said that they use the shared

global area to do so. By using the shared global area, this

can cause security problems. INGRES entered this market much

later than ORACLE and uses the concept of minidisks which is

a multi-file architecture.J34]

Performance And Feature Related Issues

ORACLE does support nulls, that is, it differentiates

between nulls, blanks and zero values. Furthermore, a I

relation can have an unlimited number of rows and up to 255

columns (and therefore can support long text). ORACLE also

has an array interface which allows records to be copied in

batch which improves performance greatly over copying records

one by one. Finally, ORACLE offers an internal sort on

frequently performed SQL query options, namely GROUP BY,

ORDER BY, CREATE INDEX, and SELECT DISTINCT, which greatly

increases sort speed performance.[35] 0
ORACLE supports only the B-TREE file access mode which

is the file mode best suited to most situations. However, it '®

is not possible to use other types of file access modes.

tv



70.

Query Language

ORACLE made the decision in 1981 to use IBM's Structured

Query Language as its data language. This became the

"official standard" in 1986. Thus, ORACLE is ANSI SQL

compatible and has the ability to run DB2 programs without

performing any modifications.

4 GL Tools

Many users did like ORACLE's 4 GL tools, especially

SQL*Calc, the Forms options, the high-level language

interface and the Data Load facility. On the downside, some

users felt the report writer facilities were not good enough V

because they lacked flexibility.[36]

Security

ORACLE offers extensive security features. For example,

ORACLE has locking techniques which prevent the users from

altering data, called an exclusive lock. Also, they have a

locking mechanism which prevents changes to data being read,

called a shared lock. Each data owner can use GRANT/REVOKE

0



71.

statements in order to define security any of the following

levels: tables and rows, on a field, or on a field-by-value

level. Furthermore, the AUDIT statement can be used to check

for unauthorized use, making it possible to track down

violators. [37]

Network Support

ORACLE supports a great variety of networks including:

DECNET, TCP/IP, RS 232 asynchronous TTY communications, 3270

PC/Irma Protocol, EtherNet LAN with TCP/IP, and ORACLE

supports customers who want to develop custom protocols.[38]

l,N
MO



72.

'41

S.

S

c t

F,

AN



73.
0

CHAPTER FOUR

INGRES DISTRIBUTED RDBMS

Background on INGRES

The INGRES Project was initiated by Michael Stonebraker

and Eugene Wong in 1973 at the University of California,

Berkley. The goal of the project was to develop a working

relational database system.J39] In 1979, Eugene Wong and the

other authors of INGRES decided to form a company to produce

INGRES as a commercial product. So in October 1980,

Relational Technology Inc. (RTI) was founded.[401

In the past, INGRES concentrated on the minicomputer

relational DBMS marketplace, namely, Digital Equipment

Corporation's VAX line of computers and UNIX OS. INGRES had

about 45 percent of the minicomputer DBMS market. In other

words Relational Technology Inc. focused on the scientific

and engineering market. In contrast, ORACLE focused

primarily on the commercial business market. However,

currently they are not so specialized and compete in all

areas.

Today, INGRES has perhaps the largest number of

Unix-based DBMS customers with approximately 20 percent of

Ir M-



74.

its user base operating in Unix. Overall, the total number

of users of INGRES as of December 1986 was approximately

3,750 versus the 4,000 users of ORACLE.[411

Relational Technology had trouble in the past competing

with ORACLE because the INGRES RDBMS was designed for

specific operating systems, whereas ORACLE ports their system

to a variety of different machines. Although INGRES is also

written in C, they develop and maintain separate code for

each operating system. In contrast, ORACLE ports are derived

from the same source code which is much faster.J42)

INGRES has extended its RDBMS to distributed database -4

systems by introducing INGRES/Star in 1986. INGRES/Star is

built upon INGRES/Net (see Figure 7), the first data

networking product, which was introduced in 1983.[43] .r

INGRES/Star

INGRES/Star is an open-architecture distributed database .,.

system which supports a variety of environments, allows a

user to transparently access data and ensures high

performance and reliability. INGRES/Star consists of an

open-architecture distributed database, a set of integrated

tools, and high performance SQL (see Figure 8).

According to the INGRES/Star brochure, "INGRES/Star is

built upon the INGRES/Net product to translate messages

'V. * ,(4,-,

I , °4,.



An&JU UW Ar 'n -,VT- IL7A I VTVT 1L-YLWA0

Distributed Access Networking

INGRES/NET

APU- 
SO

*Transparent remote access
9*Distributed processing
*Multiple network protocols

Figure 7



76. 0

iniemrad Appia~on Tools

I&IW Azbd 
jci RuonLaCR

Open-ArVchitecture
Distributed Database

Hicgh-Perforrnance SQL a

iNGORES Ro D.Iaase system I

Q ' - Da~a Oi~or.3rv

Figure 8

V,. V. %..
-w~~~~ %d* ~. , * .. * P



77.

transmitted over the network invisibly, hiding the

differences between the disparate machine architectures
0

through a common interface" (see Figure 9). Applications in V

INGRES communicate with the INGRES relational database

manager using a common language which is independent of its

environment.

Each machine in the network runs a standard version of

INGRES, with each site containing its own local data

dictionary. One important feature of INGRES is that it keeps

the front-end processes separated from the back-end

management software, similar to ORACLE. Applications use SQL

in order to ask for data. INGRES uses a distributed database

manager which segments and routes SQL queries to the

appropriate databases in the network. The distributed

database manager in effect coordinates the front-end

applications and the back-end databases (see Figure 10).

Features of First Release of INGRES/Star "
Transparent Retrieval-.-

This feature allows users to access data from multiple"-'-

" sites as if they were querying a single database.

Distributed Transactions with Single-Site Update 't'

Similar to SQL/Star, INGRES/Star allows the users to.-...

. %

v .': v'., . '-'-.'a, .,a;,.'.--.'.'. -....- ,'-"'€.- ,> ..--.':.:,.',:'Z ¢< ..<..:ev .-." .'..'.."'

. ,r ,e "% ' ',', ".' "J, ' , 5, , % '%'*" % " 
"

" 
M

- 4" " --" • " " "'"," €'""" '" " "



78.

INGRES-Portable Applications & DBMS

MICROSMINIS
MAINFRAMES

--

* Dissimilar hardware
*Dissimilar operating systems
* Dissimilar terminals

.g r'.

'.
, a

Figure 9

e.Pj.

.. 5 ,,/" '-

1. . . ... .... .... .,...... .... ... .. ......-,.., ..:.. ,..'.:.. *.'... ,



~~w vw

79.

Distributed Database Manager
INGRES/STAR

AP PLI-SO

SQL Subqueries

1 6

Ficqure 



80.

access data from multiple sites in a single query. Any

particular transaction which requires an update may only

affect one site, but this site may be anywhere in the

distributed database network. It is possible, however, for

different transactions within a single application program to

update multiple sites. Thus, you will notice this is

identical to how ORACLE deals with transactions.

Support for Unix and VMS

Currently, INGRES supports most Unix environments as

well as DEC VMS environments. S

Query Oltimizing

INGRES/Star uses a query optimizer to fine tune the 5

system. In the first release, the query optimizer maintains

excellent performance by minimizing communications traffic.

The INGRES query optimizer is based on statistics pertaining

to the database queried. Thus, it chooses a certain access

strategy based on the number of occurences in the database of

a particular item. For example, say you want to do a join on 5

two tables where: Age>80 and Wage> $1. Thus, the query

optimizer would first pull out all employees who were greater

than 80 years old first, since almost everyone's salary would•4

be greater than $1.[441

Integrated Tools 0

._ -

3'. ,, V 4 %' V> >



81.

INGRES/Star provides the user with a set of integrated

tools which greatly speed development time of applications.

Programmers can use 4GL, visual forms editing and host

language interfaces including ADA, BASIC, C, COBOL, FORTRAN,

PASCAL, and PL/I. INGRES also offers Visual Programming

which is used for ad-hoc queries and simple reports which

aids in decision support at the end-user level.(45J

Benefits of INGRES/Star

Reduced Costs

INGRES/Star provides application portability, although ;.

it does not run on the variety of hardware ORACLE supports.

By portability I mean it is possible to develop an '40
S

application on a microcomputer and run it unchanged on a mini

or mainframe computer. This feature means it costs less to

develop and maintain an application for the following two

reasons: (1) applications can be run on hardware that is

most cost-effective and (2) any maintenance changes need be

made to only one set of source code.

Also, INGRES/Star allows modular expansion of the

network. Thus, it is possible to utilize the current -

investment in hardware and networks and expand as needed. -_

Improved Productivity

Application programmers and end-users have the ability

- - . "" I'*W



82.jS

to access data throughout the network.[46] Furthermore,

users need only learn a single language (SQL or QUEL) or

users can utilize a menu-driven application called INGRES/QE

to interact with the database.[47]

S

Finally, applications are data independent in the sense -.

that the user does not have to worry about where the data is

located or how to get to the desired data.[481

S

Higher Performance

By utilizing the data replication feature, it is

possible to have fast response time because the data is
.5-=

located where it is accessed most frequently. Also, data

replication allows the applications to be more available

because applications can continue to run even if sites fail

in the network.

Since there can be true parallel processing of multiple

computers in the network, greater throughput can be achieved. .

Greater Manageability

INGRES/Star's open architecture permits managers to

maintain security and integrity of the data locally, while

still having their data accessible across the network. Thus,

the "owner" of each machine determines who may access a

particular table, row, or column of data. J19

•S

• S



83. %
0

K7

Architecture

INGRES/Star offers an open-architecture distributed

database. INGRES/Star really consists of two parts, namely,

the distributed database manager and the local database

manager. The distributed database manager takes care of

managing the communications between the user applications and

the local database manager. Whereas, the local database

manager gets requests from the distributed database manager

and takes care of processing the requests (see Figure 11). I

have included Figure 12 in order to illustrate the fact that

INGRES RDBMS accesses data differently than distributed

INGRES. As you can see by comparing Figure 11 and Figure 12,

the distributed database uses both a centralized distributed

database manager to deal with queries and responses to the

various local database managers. Under INGRES RDBMS, there

is only one database, and hence only one local database

manager is required.

Distributed Database Manager

The distributed database manager receives queries from

the user application. Once it receives a query, the

distributed database manager converts the query into

subqueries based on the nodes where the information is % %

stored. Second, it transmits these subqueries to the

appropriate local database managers. The local database

managers process the subqueries and then the distributed

V ~ ~ *~



84.

Distributed Database Data Flow

U S E)

APPICARTION

c a

DISTRIBUTE

D A A 9A 3
AI N 0E

n cc c
cc~ z

C2OL "

L 0 OA

DATABASE DATABEASE A7A8A3E

MNGR MANAGEa MANAGER .f,

00

00Ar. 0 04 00.1

I z 0 a f" -

OPERATING OPERATING O P ERAT IN G

S YSTEM SYSTEM SYSTEM

DATA DATA DATA

STORAGE STORAGE STORAGE

Figure 1]



85.

Local Database Data Flow

- - -A

A ICA I 0

0

IIIL

DATAIBASE
MANAGER

0LZ ,

OP ERATING
aYSTEM

Figure ] 2 %
%
-a-

DATAxv

STORAoE

0 -

" ¢d - " i ; . , " . , , ,.' -. . . ' , ,.. .. . .. , , . . .. . , , . , .'. . .', '. . ,. , . , . .' .' ..' ., ." ,. ... .- ." . .. .' ,,' 4 ".a.y



. ..4..- ..- '-.M N

86.

database manager- g~thers the results. Finally, the

distributed database manager returns the results of the query

to the INGRES application. Thus, INGRES's architecture is

different from ORACLE because INGRES uses the centralized

distributed database manager, whereas ORACLE does not.

Local Database Manaqer

Each computer in the network has its own local database

manager. Thus, the local database manager is capable of

handling simultaneous requests from the distributed database

manager and users' requests for access to local databases.

Concurrency Control

INGRES LOCKING

INGRES uses page level locking rather than record-level

locking since they feel it provides better overall

performance for four reasons. ".

First, by utilizing a .page level locking, you take

advantage of reduced overhead since the operating system

handles I/O based on 2K pages. Page level locking has less

overhead than record level locking with regard to managing "s- " "

segments.

Second, it is easy to reorganize records on a page in

order to avoid fragmentation (maximize use of disk space)

4-.- .4 ~ .-.. 4444~* 4 II



8.

without additional overhead of locks.

Third, INGRES makes use of B-TREE and ISAM indexes at ) '_

the page level. Because the locking is done at the page

level, the indexes are fewer in number than under record

level locking, thus faster sorting.

Fourth, INGRES provides a HASH access method. The HASH

access method is good for exact key searches. For example, a

social security number could be used to access a person's

record immediately.

Fifth, in read only cases, the read level locks are

shared. Thus, there is no increase in overhead. With record

level locking there is more overhead because the locked unit

is a record, whereas the I/O unit is a page.[50]

Query Optimizer Features

INGRES uses a statistics-based query optimizer. The

INGRES query optimizer generates what is known as a Query
Execution Plan (QEP). A Query Execution Plan is an

optimization method used by INGRES which looks at the

following factors when performing a query: amount of disk

input/output, amount of CPU it will require, and the

communications cost.

% %



8s. "b-"'.
88. .

The primary advantage of the INGRES query optimizer is

that it makes use of statistical histograms. Histograms are

a pictorial view of the data and are generated based on the

exact data in the database. Thus, the query optimizer takes

advantage of this feature since it has knowledge of the data

that will be needed to satisfy a given criteria.

Furthermore, INGRES uses sophisticated mathematical modeling

techniques to figure out how much CPU and I/O time will be

required for a given query.

An added advantage of this query optimizer is that the

QEP can be saved and reused if you are dealing with

relatively static databases. Also, the QEP will draw

pictures for you to show you exactly what is going on within

a query.

Finally, both INGRES and ORACLE query optimization is

completely transparent to the user. In other words,

programmers and end-users do not have to design their own

access methods to the data.[51]

Use of Personal Computers

INGRES on the personal computer requires: 640 K memory

for application development and as little as 350 K for '-

runtime applications, DOS 2.1 or later, and 5 Megabytes of

A



89.

disk space. The INGRES Version 5.0 for the PC is a fully

functional implementation of INGRES. INGRES for PCs allows

the user to choose one of two possible interfaces. The user

can use either the "classic" INGRES menu structure with menus

at the bottom of each screen or he can choose to use a

ring-style interface, similar to that found on Lotus 1-2-3.

It is quite easy for a user to switch back and forth between

the two different interfaces.J52]

According to a test performed by Palmer and Associates

Inc., an independent consulting company, INGRES Version 5.0

for PCs outperformed ORACLE Version 4.0 for PCs in almost all

categories. INGRES was exceptional in its performance (vs.

ORACLE and Informix) with regard to the creation of large

indices and importing and exporting data form external

files. [531

Compatibility

INGRES uses QUEL as its primary data access language

which is interfaced with SQL.[54] INGRES was not fully

compatible with IBM and ANSI SQL standards until very

recently.

Portability

1.



90.

Currently, INGRES/Star runs on: IBM VM/CMS, DEC

VAX/VMS, about twenty-four Unix machines and the IBM PC.

VMS System Interfaces

INGRES makes use of two VMS features. First, INGRES

uses the native data types (ex. floating point, integer,

character) offered by VMS. By using the VMS native data

types rather than creating their own, it is possible to

execute far- less instruction sets. This is one instance

where INGRES benefits by being less portable than ORACLE but

more highly tuned. Second, INGRES uses the VMS distributed

lock manager and in fact, builds it right into their

product. This fact made it possible for INGRES to run on the

VAX-Cluster as soon as it was introduced and with extremely

high performance.

On the downside, INGRES was founded on the Unix

operating system and does not take full advantage of the VMS ,

operating system. For example, INGRES requires two tasks

probably because of the pipe structure in Unix. Thus,

interprocess communication causes degradation of performance %Owl

in this manner. INGRES does not utilize a shared buffer

pool and hence causes an excessive input/output load.[55]



-M9-;W5S52 -- fNANEWTMS DISTRlIBUTED HOMOGENEOUS AM HETEROGENEOUS 2/3
OATASASES: PITOTYPES VOLUME 3(U) MASSACHUSETTS INST OF
TECH CRIDOE R OPTh ET ALL DEC 67 MZT-KIISE-3

I~g 
F/0, 12// N

mhhhhhhhhhhhhl
smhhhhhhhhhhh



11.2.

.'40

1111.25 111 1. I6Illn IIII 11111

MICROCOPY RESOLUTION TEST CHARTf

NATIONAL BUREAU OF STAN ARDS- 1963 A

Z,
_ S

*4



~I91.

Performance Related Issues

Advantages

INGRES supports a large variety of file access methods

including both regular and compressed versions of: ISAM,

HASH, HEAP, SORT-HEAP and B-TREE. The advantage of allowing

this variety is that each method offers distinctive

advantages depending on the situation. HEAP is good when you

have sequential flat files and also for dumps. HASH allows

extremely fast access and is good when you have a key number

(example: Employee ID number). Indexed Sequential Access

Method (ISAM) is a preferred method if you have ranges with
S

relatively static data. The "all-purpose" access mode is

B-TREE. Thus, the advantage INGRES offers here is that it

gives you the ability to fine tune since you can choose an

access mode suited to the situation at hand.

INGRES does have a method which allows you to copy -

records in batch rather than one at a time.[561

Disadvantages

On the downside, INGRES does not support nulls. That

is, INGRES does not differentiate between nulls, blanks and

zero values. This might be important if you are using

statistics *or developing you databases incrementally. For

% ~ 1W%'-.V
- "-,*%*' 'J.~ ~' .O4



92.

example, suppose .we are developing a inventory database

incrementally and would like to know about a particular part

in inventory. There must be a distinction between "zero"

(for no stock remaining) and "null" (we do not have any

information on this item).

Also, INGRES limits tables to 127 columns and rows to

2,008 bytes and hence, does not support long text fields.

This may be important if you have long textual fields that

sometimes occurs in payrolls, phone books, etc.[57]

Query Language

INGRES originally used their own proprietary query

language called QUEL which was only recently interfaced with

SQL. INGRES now claims that their SQL is ANSI SQL

compatible. Many INGRES users, including the large

international bank in Chapter Seven, mentioned that they felt

QUEL was more powerful and easier to use than SQL.[581

4 GL Tools

Overall, most users seemed very happy with the INGRES

tools saying they were fast and easy to use. However, some

users felt' the report writer was too slow and could be

V

V* %

'V. * r ~ ~ -'N' *V%



93.

improved. [59]

Security

INGRES does have many security features. Like ORACLE,

it has a security audit feature so that violators can be

tracked down. It is possible to query the data dictionary

(if you have priority to do so) just like you would for any

database. INGRES does seems to lack the sophisticated

locking techniques mentioned above.

J*~

Network Support

INGRES only supports DECNET and TCP/IP. They do not

provide support for any user customization to other networks

as does ORACLE.[601

"I- e'I



94.

CHAPTER FIVE

ORACLE VERSUS INGRES - A COMPARISON

What follows is a comparison between distributed INGRES

and distributed ORACLE. What I have done in Chapter Five is

to expound more fully on my evaluation column in my

comparison table (see Figure 1).

Transparency

How ORACLE And INGRES Measure Up On Transparency

Since ORACLE and INGRES are constantly evolving systems,

I will only evaluate what they can do at the present time

(see Comparison Table - Figure 1). INGRES/Star obeys rules

one through four and fails rules five and six, whereas ORACLE

obeys rules one and two.[611 These differences result

primarily due to the different architectures employed by

INGRES and ORACLE. INGRES uses the central data dictionary

approach, whereas ORACLE uses the site autonomy approach.

Independence

. ME)S



95.

Crash Independence

When a crash occurs on a given node in SQL*Star, the

only the users requesting data from the crashed node are

affected. If a crash occurs in INGRES at the node which

contains the distributed database manager then the entire

system will be down. If a crash occurs in INGRES at any

other node, then it would be the same as a crash experienced

in ORACLE.

Recovery Independence

Recovery from a crash is automatic as can be seen in the

R-Star research done at IBM.

Recovery under INGRES is much more difficult due to the

architecture of the system, more specifically, the central

data dictionary. Thus, if INGRES/Star crashes while

executing a schema command, it would be necessary to have a

coordinated recovery between the central data dictionary and

the local system which crashed. Because INGRES does not

support multi-system coordinated recovery, it is necessary to

do a manual recovery in this situation.

Network Independence

As you can see in Figure 1, INGRES supports only TCP/IP

and DECNET, whereas ORACLE supports a much larger set of

protocols. In addition, ORACLE will support customers who

• II



96.

want to develop custom protocols.[62.

Hardware/OS Independence

ORACLE supports a much wider variety of hardware and

operating systems than INGRES. INGRES supports VAX/VMS,

Unix, and VM/CMS.

DBMS Independence

SQL*Star makes it easy to use non-ORACLE data from both

DB2 and SQL/DS.

Concurrency

In ORACLE, readers do not block writers and writers do

not block readers. In contrast, INGRES users who attempt to

write a block must wait for all active readers to finish.

Readers in INGRES cannot read a block which has been written

already but not yet committed. Thus, the reader must wait

until the writer is completely finished.

The implications of these differences are severe under

applications with many users. Under INGRES, system and user

performance will be degraded since much waiting occurs as

each must wait until all others are finished before

continuing. [63]
.p.

Deadlocks

-. * ,-w. * .~~~ '.4 *%* ~ ' . ' 4 .. - * 4 V



97.

0

There are two strategies for dealing with deadlocks. kL

First, you could decide to prevent deadlocks before they

occur. But this strategy requires much locking and releasing

of locks which causes a degradation of performance. Second,

you could allow deadlocks to happen since they occur

infrequently, but have an automatic deadlock detection and

recovery scheme. This is the method chosen by INGRES and

ORACLE. (641

Query Optimizer Features

I believe both INGRES and ORACLE have good query

optimizers. INGRES uses a statistics based optimizer,

whereas ORACLE uses artificial intelligence. Both optimizers

allow efficient navigation among databases.

Use of Personal Computers

The INGRES PC version 5.0 is faster on almost all

operations over ORACLE version 4.0. However, I believe that

ORACLE's PC version is more fully functional in the sense

that it acts like any other ORACLE system. INGRES has many

things missing from its PC version compared with their

VAX/VMS version. For example, only the B-TREE file access

method is allowed on the INGRES PC version.



98.

Compatibility

INGRES now claims to be fully ANSI SQL compatible.

However, I do not think this is really the case because

INGRES cannot support nulls. ORACLE has been fully ANSI SQL

compatible since it began.

Portability

ORACLE is more portable than INGRES as you can see by

examining Table 11. Although both INGRES and ORACLE are

written in C, ORACLE ports their systems from the same source

code. INGRES was originally founded on the Unix operating

system, and thus it is more customized to this operating

system. That is, ORACLE seems to be less customized to a

particular operating system and thus can run a larger variety

of operating systems and machines.

VMS System Interface

Both INGRES and ORACLE take advantage of certain

features of VMS. ORACLE takes advantage of a shared buffer

pool and shared code, whereas INGRES takes advantage of

native data types and the VMS distributed lock manager.

XU V W -- .

I s



6IBM VM/CMS

ORACLE takes advantage of the shared global area (SGA)

offered by IBM in order to maximize performance. INGRES uses

the minidisk approach when dealing with IBM VM/CMS.

Performance Related Issues

I believe that ORACLE offers more performance related
0

features than INGRES. ORACLE supports long text and has an

array interface which allows you to bring over an array of

records rather than just one at a time. ORACLE supports

nulls, which may be very important if you an application

where it is impezitive to differentiate between a zero value,

and no value (null). ORACLE can also use multiple indexes to

process a query whereas INGRES can use only one. INGRES does

offer more file access methods. Thus, it is possible for the

user to choose a file access method best suited to his 0
application. For example, if you have a social security

number you will probably want to use the HASH method since it

would result in the best performance. The B-TREE method is

the most all purpose method which both INGRES and ORACLE

have.



100.

Query Language
.4.. ..

S

INGRES was orginally founded on the Unix operating

system and used the QUEL query language. Recently, they

claim they are fully ANSI SQL compatible. However, they do

not support nulls and cannot handle the VAX packed decimal

format. ORACLE, who pays close attention to what IBM is

doing, made the strategic decision early on to be fully ANSI

SQL compatible. Furthermore, ORACLE SQL has significant,

powerful extensions to ANSI SQL. However, many INGRES users

surveyed by DATAPRO, said that they liked QUEL and found it

more powerful than SQL. However, SQL is the standard,

although INGRES people say that they plan to continue to

support QUEL.

4 GL Tools

Both INGRES and ORACLE seem to have good tools.

However, the major government lab discussed in Chapter Eight,

said that they would like to see more user-friendly

interfaces using icons, pull down menus, etc.

Security

ORACLE seems to offer a very high level of security.

VN~

% %1



. .- r -( ' - **..
-

-.- 101). ",.,

O.aCLE provides a security audit facility so that it is A

possible to track down violators. Also, ORACLE provides view

isolation and protected tables. In INGRES, it is possible to

query the data dictionary (with proper priviledges) just as

any database. Thus, it is possible to track down violators

by querying the data dictionary which contains everything

that is going on in the system.

Network Support

As you can see in Figure 1, ORACLE supports a much

larger variety of networks than INGRES. Furthermore, ORACLE

will support customers who want to develop custom protocols.

% .2

%



102. . .

CHAPTER SIX

DISTRIBUTED DATABASE ISSSUES

-a...'.,

.",.."

In this chapter I attempt to examine some of the issues .

surrounding distributed database systems. More specifically,

I will try to address what problems distributed database

systems solve and what problems they create. .

I believe one issue that comes up again and again is

"Should an organization be centralized or decentralized with

regard to information flow?" In most corporations, as the

price of hardware dropped significantly they bought a variety

of different machines. This obviously led to a 0

decentralization of information - often each department had

their own computer.

The primary advantage (i.e. problem they solve) of a

distributed database system is that it allows you to tie the

decentralized information back together. That is, without a

distributed database system, you just have information

floating around on different machines with no way to

integrate it across the different hardware. Distributed

database technology allows you to have one common view of the

data without worrying about the particular hardware, or

operating system. 0

... .. I.
% %



103. %

Data Control

One problem that arises is "Who controls the

information?". An individual user many say this is My data

and I do not want anyone to touch y data. This is the basic

approach taken by current distributed database systems

because the security is imposed on a site by site basis. In

other words, the owner of the machine is the one who controls

who can and cannot access a particular table, column or row

of data. This type of situation is seen as favorable by some

people such as the personnel department, since they can

control who can and cannot access salary information.

However, from an administrative point of view it is much more

difficult to control this matter so that people who should N

have the authority to see particular information can do so.

Optimization

An area which is likely to receive much attention in

distributed database systems is optimization. Many

additional situations arise in a distributed system (versus a

traditional RDBMS) which require optimization. Consider the .

following two examples:

Example 1: There is a network of computers and there
are seven different ways to get to a
particular machine. You should choose the
best route.



104.

Example 2: There-are a total of 6 machines. Four are
busy and 2 are free. Thus, if you are doing
a join, it might be better to use the free
machines.

Neither ORACLE nor INGRES addresses the situations mentioned

in Examples One and Two.

Another trend in the industry seems to be to develop

gateways into other systems. By gateways, I mean one DBMS

can transparently go into another system. In other words, 0

the user will not have to be concerned with what DBMSs are

involved when he performs a query. The reason this is such a

"hot" area is because many dollars have been invested in

other types of database management systems (example: IMS) and

this old technology will not disappear within the next five

or ten years. Thus, current distributed database systems

should be able to work in conjunction with existing systems

if they are to be truly successful.

Finally, let me speculate a bit on the future of

distributed database systems. Once distributed systems

become more developed they will be allow extremely high

performance, that is, faster performance that can be attained

on any single machine. Thus it will be possible to have

multiple nodes working in parallel (i.e. parallel processing) -

on the same problem.

"0

%'A..

.6 X4 ~''I* '-.-%%*.-v-.':A*K 6 ~:..'~ • 1.

-



10..

CHAPTER SEVEN

MINICASE STUDY ON A LARGE INTERNATIONAL BANK

Distributed INGRES Case Study

In 1982, a major international bank chose to use

ORACLE's relational database management system. They chose

ORACLE because at that time the type of production

applications they were doing required high performance. More

specifically, they needed to do many read operations very

quickly and they found ORACLE appropriate under these

circumstances.

However, over time, the bank found there was more and

more demand to build applications at a faster rate,

especially smaller applications. Thus, the bank found the

fourth generation tools that went along with ORACLE not as

effective, pleasant to use, or as fast as INGRES tools.

Therefore, the bank chose to switch to the INGRES RDBMS

primarily because they found the fourth generation tools of

INGRES better than those of ORACLE.

Bill a consultant to the bank mentioned additional

reasons why the bank chose INGRES which follow. Bill said

INGRES' performance improved a great deal and that



106.

INGRESappears to perform better at joins than ORACLE. He

also said ORACLE seems to be better at single table access,

however, he stated that INGRES has improved significantly in

single table

access. Furthermore, benchmarks they performed at the bank

showed the systems were comparable in terms of their general

performance.

Since the bank liked the INGRES RDBMS, they decided to

stay with INGRES when deciding to use a distributed database

system. In other words, when they found the need for a

distributed database system they chose distributed INGRES

because they liked the INGRES RDBMS they were using. Note

that the bank did not do a comparison study between

distributed INGRES and distributed ORACLE to arrive at their

decision.

Was Security A Factor In Their Decision?

The bank said at the time they made their decision

security was not an issue. They are using Digital Equipment

Corporation's VMS operating system at the bank, so they claim

that the VMS operating system provides many security

features. However, security issues have become a concern

recently.

Why Did They Need A Distributed Database System?



107.

The first applications of distibuted INGRES are not

really taking full advantage of the distributed system. The

bank primarily has used a feature which INGRES has which

allows you to run your application on one machine (front-end)

with your database on another (back-end). It is possible to

do this using ORACLE but it is a great deal of work. For

example: In 1982 the bank used ORACLE RDBMS and put

applications on multiple machines and the database on a

single machine. Since a distributed database systems was not

available at the time, they separated the front-end and the

back-end. The bank used their own protocol for applications

requesting data from the database and the database returned

the data to the application (to the front-end).

In INGRES, the front-end is running on one machine (i.e.

the terminal process) and the database is running on another

machine. These two processes communicate with each other at

the application level. The bank finds this feature extremely

useful since they have many users around the world going

against the same database and all these systems are being

built on VAX machines.

Examples of Applications Using Distibuted INGRES

The distributed INGRES database system (more

" '" "'



108.

specifically the 'front-end, back-end feature) was first used

at the bank to work on various small applications (around 30

simultaneous users at each site) used in many sites around

the world. If the bank allowed the entire application to

reside at each site, they would also have to provide full

backup facilities at every site. Thus, by putting the

front-end out at each site and centralizing the databases in

New York City all the backup is done in New York City and

hence all the redundancy is in NYC. So, in fact if one

machine goes down then the users directly access the

application in New York City.

Second, they are building a global system right now in

order to resolve the following problem: They have

transactions for a customer of site A which are executed by a F_

customer at site B. Without a distributed database system,

the various position and transaction records are duplicated

at the application level at both site A and site B. Hence,

you run into problems when the data is different at sites A

and B and therefore have to reconcile the records. Thus, in

this global system it is necessary to reconcile the records

around the world.

With a distributed database system, if they do want to

replicate the data it is purely a performance issue done

within the database system and not at the application level.

So from a logical point of view there is a single record at

AII



109.

each site. Therefore, there is no reconciliation problem.

Apparently, this reconciliation problem currently exists for

many applications at the bank, such as:

- Securities custody: This system involves a settlement
of security transactions around
the world.

- Foreign exchange

- Funds transfers

In order to give an idea of the typical transaction volume

found on one of these systems, let us look at the securities

custody application. The current volume on the securities

custody system is approximately 10,000 transactions per day

with about 5,000 of these transactions performed in New York

City.

Are You Satisfied With Distributed INGRES?

The bank says that INGRES is still in the Beta Version

and that they have only really used the front-end, back-end

features associated with the distributed database systems.

Bill says distributed INGRES does not have the following

two features which the bank needs which are two phase commit,

and deferred copies. However, the bank expects INGRES to

have these features incorporated into their product by the

end of 1987.



110.
0

Other Comments On INGRES

Until recently, INGRES has seemed to take the lion's

share of the scientific and academic market whereas ORACLE 5

has the lion's share of the business market.

By supporting SQL, INGRES has managed to make inroads

into the business market. The bank said that INGRES' SQL was

not so good when the bank started using it one year ago.

Now, however, the bank said that INGRES' SQL is more fully S

integrated into Relational Technology's various products.

INGRES now claims to be fully ANSI SQL compatible.

The bank used SQL for three years and then they started

using QUEL and they found it better. Their comment was that

QUEL seems more straightforward and flexible. Bill feels

that QUEL makes it easier for the user to say what they want

to say and he feels QUEL is more powerful than ANSI SQL.

However, because SQL is a standard, they feel QUEL will not 0

be supported by early 1990.[651



111. ,.

CHAPTER EIGHT

MINICASE STUDY ON A MAJOR GOVERNMENT LABORATORY
S

Distributed ORACLE Case Study

Distributed ORACLE was chosen by the major government

lab because an RPF was put out to anyone who wanted to bid

and ORACLE responded, whereas INGRES did not. Currently, the

lab is running distributed ORACLE under VMS Version 4.5. AS

far which system is better, John Rector of the lab said both

INGRES and ORACLE have their strong points (these points are

mentioned later in this minicase).

Why Did The Lab Need A Distributed Database?

When the lab bought ORACLE, it was with the intent that

it would be distributed. The only reason they had used

non-distributed ORACLE was because distributed ORACLE simply

had not been developed yet. The lab said they were fully

aware when they purchased non-distributed ORACLE of the time

frame involved to receive the distributed version.

How The Lab is Using Distributed ORACLE

I~~ .F 4I I



112.

The lab says essentially they are a local area network 4

(LAN). For instance, someone may want to do a large project

and he may need data that is collectively owned. Then he may

want to run something which is CPU intensive. For example, a

new tool might use much CPU power because it has a screen

manager. Therefore, it is nice to put that user off on a

Micro-VAX and then have him be able to select his data from a A

larger servar (for example, an 8550). Thus, the users actual

computational power comes from some smaller machine whether

it be a personal computer or a VAX station. Therefore, the

idea is to make use of database servers as well as to give

individuals more computing power but on a separate CPU.

John Rector said accessing the same data really has two

components. First, there is now one place to get at the

data. Second, the data, which is a very important commodity,

can be controlled by someone who is trained in maintaining

it. For example, you can have a database administrator (DBA)

or a systems manager control the 8550's and databases. This

makes it possible for users to pull the data over and do what

they want to it. It is not feasible to have a DBA looking at

each one of the individual databases because the costs of

doing so are too expensive.

How Much Degradation Is There in LAN? .

"O ~ 1,? -4 4



113.

The following statements apply to both ORACLE and

INGRES.

First, let us assume that a user brings up a background

process (fires up a server). This user has got some image

running as a process on a local computer but he is also

firing up an image in another process on the host computer.

So there are a couple of things which are happening here.

That is, whenever you do a connect to a database, you incur

the full overhead (operating system overhead) of creating a

process. This overhead is certainly significant. Now, if

there are many people making this type of request on a small

VAX, for example 20 or 30, that is a significant amount of

time that the operating system is spent simply generating new

processes. Even just context switching between them may be

significant. You can on a VAX (any OS, though) see how much 0

time it is spending doing operating system things. In VAX

terminology, you can turn on the monitor and see how much

time the OS is spending in kernel mode and how much time it

is spending in user mode. This will give you an idea of the

impact of the database as far as how much time is spent

serving the user and how much time it is doing all the

overhead. Thus, overhead increases substantially with

distributed database systems.

Also, another thing that entets the picture is the

I . - . . . . . . 5



114. .. ,?N

design of programs and the design of methodologies of how

user s access these things. If users are continually

logging in to the database, doing something, thenlogging off,

the load increases tremendously as opposed to if they logon

and stay connected. One thing you can do if you have a

workstation is you can switch between processors and keep

that connection open all the time. So from a user point of

view that makes the response time quicker because the user

does not incur process creation overhead.

High Performance Feature of ORACLE

John Rector mentioned ORACLE's feature called an Array

Fetch which lets you fetch multiple rows of data into the

buffered space in your program. He said this is a

significant performance feature because it allows you to pull

data over in an array as opposed to a row at a time.

Is Security An Issue?

Security is a very important issue at the lab. John

Rector said security is handled very well by ORACLE. He said

ORACLE followed the System R design with regard to security

and thus provides the GRANT command. Also, ORACLE added the

AUDIT command which allows you -to track down system

.. PC **~3,~ ~~ - .~ ~.~ - ".' -



115.

violators.

General Security Problems Related to Distributed DBMS

One of the things not fully addressed in a distributed

environment is access to the communication lines, but that is

not necessarily a DBMS problem per say, but it is still a

problem which must be addressed. John Rector says you now

encounter all the security problems you have whenever there

are communication lines coming into your system of any sort.

This network problem becomes a database problem because you

are using that facility. Thus, you are open to a few more

serious security problems when using a distributed DBMS.

How Do You Find ORACLE's Tools

John Rector said that ORACLE's ad hoc processor,

SQL*Plus is a good tool.

However, John thinks neither INGRES nor ORACLE is

leading in the 4 GL tool area. He said you do not see ad hoc

processors of the type you currently see in the workstation, %

MacIntosh, or even the new IBM PC environment. That is, you ..

do not see user-friendly tools which use a mouse, pull-down -'. I

menus, etc. Both companies' marketing approach has suggested



116.

that everyone is using a VT 200 terminal rather than a

workstation.

John Rector said the ORACLE Forms Product is approaching

the workstation or MacIntosh mentality with the design of a

form done with pull down menus. Right now on the VT 220 it

is necessary to use arrow keys, however, a mouse interface is

planned.

On the other hand, John said ORACLE's Report Generator

product is a very archaic product. For example, when you

build a file you use .S in order to put a space in. John

said that there are third parties who provide a Report

Manager. He also said you will see more and more involvement

of third parties since SQL is the standard. In other words,

it is now cost justifiable for third parties to enter the

market.

Other Improvements Needed For Distributed Database Systems

"-w

First, John says that the distributed database companies

need user feedback since they are brand new. Furthermore,

they need time for the design of peripherals that go with

distributed systems. -

Second, John feels that database companies should get

& % N .... " .'



Jul-

117.

away from the "single-tube" concept and move toward tools

41which are based more on the workstation style of user

interface (example: MacIntosh). [66]

I'l ij 4 , ".,.5 " 
..

t LM 11S

MR.', &, L" 11-

N,. 30A5'



118.

CHAPTER NINE

CONCLUSION

Managing A Distributed Database System

Neither ORACLE nor INGRES has really addressed the issue
O

of how to manage a distributed database system.

INGRES uses one solution, namely a central data

dictionary. The problem with this is if the node goes down

containing the distributed database manager, then you have

serious problems.

ORACLE uses the concept of adding a user to a node.

Obviously, you can add a single user to many nodes. Thus,

this architecture seems designed for long haul databases

(example: NY, LA, Chicago). The idea is that people want to

communicate between the sites but essentially the sites are

separate entities. In other words, there is some

communication between the sites, but not a great deal.

A drawback of adding node by node is that you need a

little bit more technical expertise in order to add node by

node rather than by a central dictionary approach.

There is a political issue when dealing with distributed

$ ,
J- 7"



WUMI WrumR RN

]19.

database systems as well. For example, who owns a particular

VAX machine becomes a political issue. Many things do not

happen in databases not due to technical reasons but rather,

because of the politics of the organization and who owns

what. This is a problem because how do you manage users on a

distributed system or how do you maintain a distributed

system (how do you do backups, etc)?

A concept you are starting to see is LAN with, for

example, four or five VAX workstations and three 80350s. You

may want to add a user to all 80350s, that is you simply want

to grant him access (select) on some table. That table may

even move from one site to another. This issue has not been

well addressed, although it may just be early. Furthermore,

some of the DBA tools have not been expanded to the point

where they allow a DBA to gracefully handle a distributed

database. [67]

Future Directions

Both distributed ORACLE and distributed INGRES offer the

user a great deal. That is, they allow the user to access P

data transparently from a variety of machines and operating

systems.

However, both ORACLE and INGRES must add other features
'A

% .



120. N

such as: (1)" full update capabilities, (2) support

concurrent copies, and (3) provide gateways to non-SQL DBMSs.

Full Update Capabilities

This feature will allow users to update multiple sites

in a single transaction. Thus, it will be possible to issue

a single update command which will affect several databases.

Support Concurrent Copies

This feature could make it possible to have secondary

copies of tables which will be updated concurrently and

transparently to the user. The concurrent copies feature

makes it possible to keep the data close to the users and

thus serves as a performance feature (as well as minimizing

communication costs).

Gateways Into Non-SQL Systems

Both ORACLE and INGRES need to work on building gateways

into other systems. For example, many companies have

invested a great deal of money in IMS applications. It would

be nice if ORACLE and INGRES could access this data so that

the user would not even realize he is dealing with IMS.

.1cl

40



121.

FOOTNOTES

(1) "INGRES/Star Distributed Relational DBMS Technical
Backgrounder", May 21, 1986.

(2) "INGRES/Star: The Distributed SQL Relational Database"

(3) "INGRES/STAR"

(4) Neville, Donna. ORACLE: SQL*Net User's Guide. Belmont, CA:
Oracle Corporation. August 26, 1986, p 2.

(5) INGRES/STAR Administrator's Guide - Release 5.0 VMS
Version. Alameda, CA: Relational Technology Inc.. 1987,
Chapter 2, p 1. 0

(6) "Relational Technology Announces Breakthrough With
Distributed Database Product". June 9, 1986, p 5.

(7) "Query Processing in R*", p 31.

(8) Ibid. p 32.

(9) Stonebraker, Michael. "Transparency in Distributed
Database Systems". p 1.

(10) Ibid. p 2. S

(11) Ibid. p 3.

(12) Ibid. p 4.

(13) Memo from Ken Cohen of Oracle Corporation, p 5.

(14) Ibid p 6.

(15) Ibid, p 7.

(16) SOL: The Quiet Revolution. ORACLE. ORCE Systems Software S
B.V. 1986. p 106.

(17) SOL: The Quiet Revolution. ORACLE. ORCE Systems Software
B.V. 1986. p 106.

(18) DATAPRO RESEARCH CORPORATION, "Oracle Corporation:
ORACLE". Delran, NJ. November 1986, p 101.

(19) Shamoon, Sherrie. Management Technology. "Oracle's Larry
Ellison: The king of relational software". December 1984.
Reprint. 0

(20) DATAPRO RESEARCH CORPORATION, "Oracle Corporation: X

bel I ', 11 1-.'1 ,ivp;.



122.

ORACLE". Delran, NJ. November 1986, p 102.

(21) Letter from David Martin of Oracle Corporation

(22) DATAPRO RESEARCH CORPORATION, "Oracle Corporation:
ORACLE". Delran, NJ. November 1986, p 101.

(23) Rizzo, Tony. PC Magazine. "Project Database II:
Programmable Relational Database - ORACLE". June 24, 1986. p
146-147.

(24) DATAPRO RESEARCH CORPORATION, "Oracle Corporation:
ORACLE". Delran, NJ. November 1986, p 103.

(25) Ibid. p 104.

(26) "Oracle - Products and Services Overview"

(27) Neville, Donna. ORACLE: SOL*Net User's Guide. Belmont,
CA: Oracle Corporation. August 26, 1986, p 2.

(28) Ibid. p 9.

(29) Ibid. p 10.

(30) SOL: The Quiet Revolution. ORACLE. ORCE Systems Software
B.V. 1986. pp 107-108.
(31) DATAPRO RESEARCH CORPORATION, "Oracle Corporation:
ORACLE". Delran, NJ. November 1986, p 107.

(32) Rizzo, Tony. PC Magazine. "Project Database II:
Programmable Relational Database - ORACLE". June 24, 1986. p
146.

(33) Ibid. p 147.

(34) Interview with John Callandrello of Relational
Technology Inc.

(35) DATAPRO RESEARCH CORPORATION, "Oracle Corporation:
ORACLE". Delran, NJ. November 1986, p 106.

(36) DATAPRO RESEARCH CORPORATION, "Oracle Corporation:
ORACLE". Delran, NJ. November 1986, p 105.

(37) DATAPRO RESEARCH CORPORATION, "Oracle Corporation: '

ORACLE". Delran, NJ. November 1986, p 107.

(38) Neville, Donna. ORACLE: SQL*Net User's Guide. Belmont,
CA: Oracle Corporation. August 26, 1986, pp 7-8.

(39) Stonebraker, Michael. The INGRES Papers: Anatomy of a
Relational Database System. Reading, MA: Addison-Wesley

"I..



123.

Publishing Company. 1986. p iii (Introduction).

(40) Ibid. p 64.

(41) DATAPRO RESEARCH CORPORATION, "Relational Technology
Inc.: INGRES". Delran, NJ. December 1986, p 102.

(42) Ibid. p 102.

(43) Ibid. p 101.

(44) "INGRES/STAR". p 3.

(45) "INGRES - The Distributed SQL Relational Database
System"

(46) "INGRES/Star Distributed Relational DBMS Technical
Backgrounder", May 21, 1986. p 5.

(47) INGRES/STAR Administrator's Guide - Release 5.0 VMS
Version. Alameda, CA: Relational Technology Inc.. 1987,
Chapter 2, p 1.

(48) "INGRES/Star Distributed Relational DBMS Technical
Backgrounder", May 21, 1986. p 5.

(49) Ibid. p 6.

(50) Interview with John Callandrello and Jim Milbery of
Relational Technology Inc.

(51) The INGRES Advantage. "The INGRES Expert Query
Optimizer". Fall 1986. pp 5-6. 0

(52) The INGRES Advantage. "INGRES Available for PCs". Volume
II, Number 1. 1987. p 4.

(53) Margolis, Nell. Digital Review. "PC Ingres Blows by
Oracle V4 in Beta-Test-Site Benchmark". p 1.

(54) Babcock, Charles. Computerworld. "DBMS Contenders In
Grudge Match". March 16, 1987. p 121.

(55) Memo from International Network of Food Data Systems

(56) Interview with John Callandrello of Relational Technology
Inc._ _I

(57) DATAPRO RESEARCH CORPORATION, "Relational Technology
Inc.: INGRES". Delran, NJ. December 1986, p 104.

(58) Babcock, Charles. Computerworld. "DBMS Contenders In
Grudge Match". March 16, 1987. p 121.

4•



124.

(59) DATAPRO RESEARCH CORPORATION, "Relational Technology
Inc.: INGRES". Delran, NJ. December 1986, p 105. 9

(60) Interview with John Callandrello and Jim Milbery of
Relational Technology Inc.

(61) Stonebraker, Michael. "Transparency in Distributed

Database Systems". p 5.

(62) Oracle memo by Ken Cohen

(63) Interview with Ken Jacobs of Oracle Corporation.

(64) SQL: The Quiet Revolution. ORACLE. ORCE Systems Software
B.V. 1986. pp 107-108.

(65) Interview with Bill of a large international bank.

(66) Interview with John Rector of a large government research
laboratory.

(67) Ibid.
4 . .

0



125.

BIBLIOGRAPHY

Babcock, Charles. Computerworld. "DBMS Contenders In Grudge
Match". March 16, 1987.

DATAPRO RESEARCH CORPORATION, "Oracle Corporation: ORACLE".
Delran, NJ. November 1986.

DATAPRO RESEARCH CORPORATION, "Relational Technology Inc.:

INGRES". Delran, NJ. December 1986.

"INGRES/STAR"

INGRES/STAR Administrator's Guide - Release 5.0 VMS Version.
Alameda, CA: Relational Technology Inc.. 1987.

"INGRES/Star Distributed Relational DBMS Technical
Backgrounder", May 21, 1986.

"INGRES/Star: The Distributed SQL Relational Database"

"INGRES - The Distributed SQL Relational Database System"

Interview with Bill of a large international bank.

Interview with Ken Jacobs of Oracle Corporation.

Interview with John Callandrello and Jim Milbery of Relational
Technology Inc.

Interview with John Rector of a large government research
laboratory.

Margolis, Nell. Digital Review. "PC Ingres Blows by Oracle V4
in Beta-Test-Site Benchmark".

Memo from International Network of Food Data Systems

Neville, Donna. ORACLE: SQL*Net User's Guide. Belmont, CA:
Oracle Corporation. August 26, 1986.

"Oracle - Products and Services Overview"

Oracle memo by Ken Cohen

"Query Processing in R*".

"Relational Technology Announces Breakthrough With Distributed
Database Product". June 9, 1986.

Rizzo, Tony. PC Magazine. "Project Database II: ProgrammableRelational Database -ORACLE". June 24, 1986. :

% I
% -V



126.

Shanoon, Sherrie. Management Technology. "Oracle's Larry
Ellison: The king of relational software". December 1984.
Reprint.

SQL: The Quiet Revolution. ORACLE. ORCE Systems Software E.V.
1986.6

Stonebraker, Michael. The INGRES Papers: Anatomy of a
Relational Database System. Reading, MA: Addison-Wesley
Publishing Company. 1986.

Stonebraker, Michael. "Transparency in Distributed Database
Systems".

The INGRES Advantage. "The INGRES Expert Query Optimizer"
Fall 1986.

The INGRES Advantage. "INGRES Available for PCs". Volume II,
Number 1. 1987.

% % % %



127.

ACHIEVING A SINGLE MODEL FOR INTEGRATING
HETEROGENEOUS DATABASES

0
DANIEL KENNEDY

By virtue of the fact that heterogeneous database management systems must
interconnect multiple databases together, a model for this area must necessarily
address the database issue as well as the communication issue. This in turn
motivates a study of both these issues, to come up with a single unified model.

In the communication area, the most common model is the one developed by the
International Standards Organization for Open Systems Interconnection. Instead of
choosing one framework, this model unfortunately standardizes two different kinds
of network services: connection-oriented and connectionless. This duality was
caused by the debate over datagram service versus virtual circuit service. The
connectionless network service is based on experience with experimental networks,
such as Arpanet, in which each packet of data travels independently carrying with it 0
the information necessary to enable gateways to forward the message correctly. The
connection-oriented network is similar to a telephone network and a connection is
established before data can be transmitted to a particular destination. The
undesirable existence of two dissimilar network services is reflected in the reference
model.

In the database area, the commonly used model has been developed by the ANSI /X3/
SPARC Study Group. Their primary focus was on local databases resident on one
machine. An application is viewed in terms of three schemas - an external schema, a
conceptual schema, and an internal schema. The ideas of the ANSI Study Group 5
have been refined by the group currently involved in developing PDES (Product
Definition Exchange Standard).

A single model, covering both areas, should consist of modified versions of the
existing models. Specially, the ISO model should be modified so that the network
level should be designed using a connectionless network protocol. Also, the
application layer needs to be expanded.

TECHNICAL REPORT #16

-- _°. , ';k _ , ,, ,t>. ,. ;



128.

S d:

..,'A

SI

""til
'-- *0s , /

.1.h4



* *. "'.l

129.

Chapter 1

Heterogeneous Computer Networks

A recent trend in computer systems research has been towards the

integration of and experimentation with heterogeneous computer networks. Passing

information among processors with different internal data formats has proven to be _ -)

a major complication to these computer networking efforts. At the same time.

exchanging information between databases on machines with different

architectures has also become a very difficult problem.

1.1 Networking

A computer network is a collection of computers, called "hosts" that can

communicate with one another. A host can be anything from a personal

workstation to a large supercomputer. "Dumb" terminals are not considered hosts. .

One definition says

..a computer network is defined to be a set of autonomous.
independent computer systems, interconnected so as to permit interactive
resource sharing between any pair of systems. [<Roberts> p. 543.]

There are two types of networks. They are local and long haul networks. A

local area network (LAN) is used to connect computers in the same or adjacent .... ,

buildings. The cables and interfaces used in an LAN achieve high speeds by taking

advantage of lov error rates possible over short distances. A long-haul network is

used to connect computers over long distances. Its interfaces and connections are .7

primarily telephone or satellite links. The transmission rates are significantly

lower for long-haul networks. Long-haul networks are typically operated by outside

organizations. Local area networks are normally operated by the same organization

that owns the computers.

N', % %



13n.

1.2 Heterogeneous Machines

In most networks it is typically the case that the hosts are built with
21'

dissimilar architectures. There are two reasons for this in LAN's. The first is that

when newer and faster computers were purchased, they were not purchased to

replace the existing computers. but rather to supplement them. This reason is

primarily economic. It would not be economical to replace all of the machines in a

company every two years when the new line comes out. The capital investment

represented by these computers. in both hardware and software, often prohibits

their replacement with more compatible counterparts. The second reason is that

computers from different vendors may be required to fulfill different purposes. For .

example, a company may have a large database of customers: in which case it

would require a computer with large memory to store the database. However. a

faster machine may be required to run applications that use the database. This :.

would require connecting the two machines together. This would require some kind

of heterogeneous computer network. It should be obvious that long-haul networks

are primarily heterogeneous because they connect machines from several different

organizations. The task is to accurately exchange data from one machine to the

next with the user having minimal intervention into the exchange. .*

1.3 Homogeneous Machines

One way to solve the problem of heterogeneous computer networks is to avoid

it. This can be accomplished by interconnecting machines that use similar internal

data representations. Processors in such a homogeneous computing environment
,%k

require no data format translation to exchange information. They are assured by

common hardware and software design that the semantic content of their passed



131.

data will be correctly understood by their intended receiver if the information is

delivered correctly.

Obviously. homogeneous machines provide a processing environment more

hospitable for inter-computer message transfer. Unfortunately, many organizations

already have heterogeneous machines, as described above. Ignoring the data

translation problem because it can be avoided in homogeneous environments is

being unresponsive to the real needs of a large segment of the computing

community.

1.4 Incompatibilities of Heterogeneous Machines

Conveying meaning of transmitted bits in a heterogeneous environment is not

simple. The difficulY arises because of the lack of an industry standard for the

internal representation of information in computers. There are machines of ever-

description: they support sign-magnitude. or one's or two's complement arithmetic.-V

12. 16. 24. 32. 36. 48. or 60 bit word lengths. and unique floating point number

representations. At the software level, there are different ways to represent

complex numbers. vectors. arrays. and other data structures. There are even

discrepancies in the case of character data. Although the ASCII character set is the

industry standard. different machines still have different meanings for control
characters such as form feed. line feed. tab. and carriage return. .- S

In order to achieve a compromise between all of these technical differences a .

model is needed to correlate design principles, such that computers with dissimilar

architectures can share databases. Two such models currently exist. They are the

International Standards Organization Open Systems Interconnections model and

the American National Standards Institute three-tier database model. These



132.

models do not intend to recommend a particular protocol for transferring data.

Instead. they model a system from a level above the particular implementation

chosen for a protocol. In this way computers with different protocol

implementations will be able to connect as long as the protocols can be adapted to

have the same meanings. The models will be discussed in the next chapter.

!N'.

N,&



133.

Chapter 2

Existing Models for Integrating Computer Networks

Despite a wide variety of implementations of heterogeneous networks and a

massive amount of technical detail, two models have emerged for representing suchV.

systems. Both models attempt to capture the problems involved in integrating

disparate systems. While they may seem broad and general in nature, this is

understandable. It would be impossible to'develop a model that is specific enough

to encapsulate all of the necessary information to connect every type of computer to

every other type of computer. Therefore. the description of a model of such a system

must be very general. Only model those components that are essential to every

computer system can be modeled.

2.1 The International Standards Organization Model for Open Systems

Interconnection

The first model that tried to capture these principles was the Open Systems

Interconnections (OSI) model. It was developed by the International Standards

Organization (ISO) in 1980 [ <Tanenbaum2>]. The model organizes the functions

of a network into a hierarchy according to their characteristic time scales and levels

of abstraction. Each laver builds on. and adds functions to the laver below. The

most fundamental graphic representation of the ISO reference model is seen in
0

figure 2-1.

This is a copy of the reference model provided in ISO/TC97/SC16/N719. The

diagram shows two seven layer structures resting on a physical media base. The

if

% A-, A



134.

peer to peer protocol

Application o O S Application
Presentation 0 Presentation '

Session S a Session

Transport pnawc Transport

Network bw 0 Network e tr e
Data Link 44- 1 Data Link

Physical i 44Oi Physical

physical media for Open Systems Interconnection

Figure 2-1: Seven layer ISO reference model

boundaries between layers define the point at which a laver can request the services

of the laver below. Communications between layers on the two different structures

are by means of protocols. Protocols are illustrated by the dashed lines between

structures and are limited to communications between the same layers on both

structures. "The ISO Reference Model of Open Systems Interconnection provides

the functionality for interprocess communication between application processes."

[<Bachman> p. 36]

The software and hardware implementing these layers must be present in

each host in the network. The protocols in the figure show how the software is

designed so that layer i on one host can interact with layer i on another host as if

the lower layers did not exist. This is implemented by passing data from layer i on

one host through the software on layers i- .1. being transformed by each as they

pass through. This process is then performed in reverse-order on the other host

until the data reappears on Layer 1.

.""



]35.0

Here is a brief overview of each of the seven layers:

2.1.1 The Physical Layer

This is the hardware level at which the actual exchange of raw bits takes

place. All electrical and mechanical aspects of data communication are handled at

this level. Important design issues to be considered are how to represent bits as

signals, whether to use half or full duplex communications, what pin configurations

the connectors will have, and what type of network the host will be connecting to.

The user of layer 1 can be sure that a given string of bits will be encoded and

transmitted. However, the user cannot be sure that the data has passed

successfully over the data link. Errors are detected and corrected by layer 2. 0

2.1.2 The Data Link Layer

This level provides reliable physical links between adjacent hosts. In general.

this is done by dividing the data into chunks. called frames. and then embed each

frame into a packet for transmission. A packet alqo contains additional information

such as destination address. a sequence number, and a checksum. These are used S

for detecting transmission errors. When the receiving host receives a packet it

sends an acknowledgment back to the sending host. The sender will re-send a

packet if it hasn't received an acknowledgment after a certain amount of time. 0

Data link protocols must also contain a mechanism that is known as flow

control. This mechanism detects when the receiving host cannot receive packets as

fast as the sender is sending them. and reacts by temporarily shutting off the

sender. It is able to detect this by counting the number of unacknowledged packets.

The user of the data link layer is guaranteed that a given string of bits will
S

be transmitted properly over a given link. The data link layer cannot. however,

.,- 0..-



136.

send information over multiple link paths. Layer 3 sets up and manages multiple

linked paths. S

2.1.3 The Network Layer

This level provides multilink paths from host to host. The basic strategy is to

place a "routing table" in each switch that tells what link to use when forwarding

information to a given host. This routing table can either remain the same for an .,

entire call. or it can be dynamically updated, depending on which network protocol

is used. The most common network protocols are virtual circuits and datagrams.

Using virtual circuits means that every packet for a given message is passed

along the same path. This path is established at the time when the message enters V

the network. The advantage is that once the path is established the exchange of

data is very efficient. The disadvantage is that a lot of memory can be wasted

remembering paths over which there is little traffic. Another problem is that if a

node goes down a whole new path must be established. Also. while it is true that d"

transmission errors will be caught. they will not be caught until they reach their

ultimate destination. So if an error occurs at the first node in the path. it is not S

noticed until the packet reaches the receiving host. This is inefficient.

A datagram is a packet that is sent independently of all other packets from

the same message. It must contain the full address of the receiving host. The S

advantage of datagrams is that messages that are small enough to fit into a single '

packet are sent very efficiently. This is because each time a packet reaches a new
node it is sent off to the "best" node in the direction that it is going. Another _

advantage is that loads on links become more balanced. Also, better error detection I

and correction is achieved with datagram service. The disadvantage is that more

packets are likely to get lost and packets can arrive out of sequence and thus must 0

be re-organized. Layer 4 insures the reliability of these multilink paths.

AW tw.
, N



137.

2.1.4 The Transport Layer

This layer provides reliable multilink paths between pairs of hosts. The

software includes tests to verify that circuits remain open or datagrams are

eventually acknowledged.

The user of the transport layer can be sure that messages will be reliably

delivered to remote hosts regardless of the state of the network, number of links on

the path. datagram or virtual circuit service, or number of operational switches. At

this level, the details of the network technology are completely hidden. The same

interface can be used with networks ranging in speed from telephone lines to

satellite links. Interprocess connections are managed by layer 5.

2.1.5 The Session Layer

This layer establishes and manages reliable connections between pairs of

processes on different hosts. It is a small extension of the transport layer. It

performs such functions as allowing symbolic names to be used when opening and

closing connections, or matching responses from remote processes with multiple I

outstanding requests to those processes. The fifth layer deals with the

transformation of data.

2.1.6 The Presentation Layer 0

This layer transforms data in certain .ways as it moves between user

programs and the network. It deals with such functions as:

1. encrypting messages. The contents of messages are encrypted on
transmission and decrypted on receipt.

2. text compression. It is inefficient to transmit redundant data. There is
usually a lot of redundancy in text data. Text compression can
drastically reduce the amount of data to be transmitted.

11 js 1, N



138.

3. virtual terminal protocol. This allows users to write programs that
will work on any terminal in the network. This is accomplished by
translating between commands on the actual terminal and a defined,
"universal" set of virtual terminal commands.

2.1.7 The Applications Layer

This final layer is where all user programs that interact with the network

must reside. This would include electronic mail programs, file transfer programs,

and any database management systems that require remote access to data that

exists on other machines in the network.

2.1.8 Relevance to Heterogeneous Databases

While the OSI reference model deals primarily with interconnecting machines

and not databases, it should be noted that it is extremely relevant to the problem of

interconnecting heterogeneous databases. When we talk about databases we are

primarily dealing with the presentation layer and the application layer. However,

it is of vital importance that the entire model is understood. This will be discussed

further in Chapter 3.

The OSI reference model deals primarily with the transfer of data over a

network from the perspective of the system. It does not model this transfer from a

programmer perspective. This probably resides in the presentation and application

layers. It has no formal description in this model, however. The next model to be

looked at is the ANSI'X3SPARC Study Group's framework for database

management systems. It is more focused on the programmer's perspective.

%



139.

2.2 The ANSI Framework for Database Management Systems

@

The purpose of the ANSI/X3!SPARC Study Group on Database Managemrnt

Systems is to investigate the development of standards for database management

systems. This group has developed a framework for description of such systems.

The purpose of this framework is not the same as the purpose of the ISO OSI

reference model. As would be expected, the purpose of the study group's model is to

model databases rather than network topologies. This means that it must not only •

look at data from the system's perspective, but also from the programmer's

perspective. The ISO model uses the system's point of view. This is not a criticism.

but rather a comment. The original purpose of the ISO model was to model

networks from the system level. It satisfied its purpose. A more detailed discussion

of this will be carried on in Chapter 3.

2.2.1 Description of the framework

In attempting to solve the problem the study group decided that the prime

concern in modeling databases should be describing the interfaces between key

components of the database. It would be pointless to outline the implementation for

each component in a database. Implementations change over time. If standards

are developed for interfaces between components then databases will survive

changes in implementation. From this, the study group developed a framework for

modeling these interfaces. The complete framework is too complicated to be

described in this summary. For a complete description see <ANSI>. A simplified

schematic view is seen in figure 2-2 on page 17. (Note: The numbers representing

the interfaces have been left consistent with those of the complete framework.

Therefore. some of them do not appear in the figure.)

'%



140

Admin.

3 3

Dolab" Aplictio

Admin 911,111101

Mad Ili

G0

literal serna

Figure 2-2: Pareiall shmtco NIfaeok

procssorprocsso

QI 36

*mai 36 Intenal I Cooopual

81*agtn * ' J'v:



RIOM-I ,I~rUNI 
X I, . . .Mx"-

141.

In the figure, hexagonal boxes represent people in specific roles. The
0

rectangular boxes are processing functions. The lines represent data flow, control

information, programs, and data descriptions. Solid lines identify the interfaces

between components. The dashed boxes indicate program preparation and

execution systems. The triangle in the middle is representative of the database's

data dictionary.

The diagrams specify function, not implementation. Each box may be

representative of several other modules so long as the function of the box is the

function described. In this modified framework the principle elements of the

original framework are left intact. Also, interfaces are numbered in the same way

as in the complete framework.

2.2.2 Framework concepts

The function of a database is to perform representation and mL: 'pulation of

symbols about a limited part of the real world. This limited part is called the

enterprise. There are three significant realms of interest in this area. The first is

external. This is a simplified view of the real world as seen by one or more

applications. The second realm is conceptual. This is the limited model of the real

world as seen for all applications of the enterprise. The last realm is internal. This

is a model of the data maintained for the representation of this limited model of the

real world.

Within an enterprise there exist applications. An application is a part of the

enterprise whose goal it is to accomplish a specif, c task in pursuit of the enterprise

goal.

The external realm contains external views of the database, each of which is a

collection of objects representing data of interest to a specific application. Each

10 N



142.

external view is associated with an external schema describing the objects in that

external view of the database. 0

There is also a conceptual view of the database, which is a collection of objects

representing the data of interest to the enterprise. The objects are described in a

description language. The description of objects according to this language is called

the conceptual schema.

The internal realm also contains an internal view of the database. This is a

collection of objects which are related to the objects in the conceptual view of the

database. It is described by an internal schema. The internal realm is oriented

towards the most efficient part of the computing facility. The internal realm is the

point at which the database makes contact with the computing facility on which

the database resides. Therefore. it must be easily modifiable. This means that if

the particular computer on which the database is based is altered or replaced. the

internal schema must be able to change to accommodate. thereby preserving

independence of implementation.

The data dictionary contains all information about the database. This

includes schema descriptions as well as descriptions of the mappings between

schemas.

The enterprise administrator is responsible for creating the conceptual

,. 1 ma. He or she serves as the focal point for identifying information that is vital

to the enterprise. He or she must also determine how this information is to be

managed. as well as who should see it. In addition, he or she must describe the

relationships between information objects. The conceptual schema is sent to the

conceptual schema processor to be coded into a computerized form.

The database administrator must specify an internal description of the

V%1 V.J !W! T r% 1( %.. 'ror

%7'



143.

information presented by the conceptual schema. The internal schema is then

forwarded to the internal schema processor, which stores it in the data dictionary.

The application administrator develops an external schema based on the

needs of the application programs utilized in the database. The application

administrator is also responsible for control of all of the application programs.

2.2.3 The interfaces

The following describe the various interfaces required in the ANSI'X3 three- 0

tier framework: ( Please refer to figure 2-2 on page 17.)

Interface 1: This is the interface by which the enterprise administrator tells
the database management system his declarations of the
conceptual schema.

Interface 2: This interface presents the coded conceptual schema to the data
dictionary for storage and retrieval.

Interface 3: The database administrator and application administrator use
this interface to determine information about the conceptual
schema.

Interface 4: This is the interface by which the application administrator lets
the database management system know his intentions for the
external schema.

Interface 5: This interface presents the coded external schema to the data
dictionary for storage and retrieval.

Interface 6: This is the interface by which an external schema is made
available for use in writing or processing an application
program in the host language.

Interface 7: In this interface, an application programmer specifies the , '

selection and manipulation requirements within the application
program on external data objects defined in the external
schema.

Interface 12: By this interface, an external data manipulation language is
expressed in a form independent of any host language.

Interface 13: This is the interface by which the database administrator lets
the database management system know his intentions for the
internal schema.

Interface 14: This interface presents the coded internal schema to the data -
dictionary for storage and retrieval.

% % %



144.

Interface 15: This interface presents the internal schema to those authorized
to see it. ',

Interface 16: A programmer specifies access and manipulative statements on '-..
internal data objects defined in the internal schema using this
interface.

Interface 18: By this interface an executing system program accesses and
manipulates internal data objects that are defined in the
internal schema.

Interfaces 34-38: These interfaces transmit the schemas and mappings to the p-:
various transform modules and program preparation and
execution subsystems.

2.2.4 PDES: A standard that uses the framework as a model

PDES is the Product Definition Exchange Standard. The PDES project was

started in 1984 and has two objectives. They are to "develop an exchange standard

for product data in support of industrial automation [and] to represent the US

position in the ISO and take the leadership in the development of a single

worldwide standard for the exchange of product data." [ < Kallel >I1

The intention of PDES is to develop an exchange standard for product data as

a whole. This means that the data should include all functional and physical

characteristics of the manufactured product. •
It includes the geometry. topology, tolerances. relationships. attributes,

and features necessary to completely define a component part or an
assembly of parts for the purpose of design, analysis, manufacture, test.
inspection, and product support.

[< Kallel > I

The information transmitted using PDES is presented to the receiving host in

a form that can be directly used by an application program. The transmitted data

does not change regardless of the architecture of the machine that it is being sent

to. This is a radical departure from the Initial Graphics Exchange Standard

(IGES). The purpose of IGES was to provide the exchange of data between

individual systems.

4- 'L 1



145.

The committee that developed PDES (ISO/TC184/SC4) based its approach on

the ANSLX3/SPARC three layer architecture.

It aims to model the whole life cycle [of the product] using a formal
data modeling methodology and integrate the different models of different
applications into a single conceptual schema independent of a particular
application view of the data and the technology used to implement it
resulting in a common knowledge among different applications that is
totally consistent between all different views.

[< Kallel > ]

PDES is still in the development stages. It is a good example of typical

standards of the future and is worth taking a closer look at when it is fully

developed.

2.3 Summary

A database management system can be modeled by the many interfaces and "'

modules shown here. However. if we are talking about connecting heterogeneous •

databases then we must also consider networking problems of the host computers

running under the databases. This is where we can incorporate the two models

presented here. This will be discussed in Chapter 3. 5

#'p. %,'

Yp

MOM

•0



146.

Chapter 3

One Model for the Integration of Heterogeneous Databases

The problem at hand is to achieve a single model for the integration of

heterogeneous database systems. In Chapter 2, two models were presented that

have been developed for similar purposes. They were developed to serve as an

industry standard for networking (the ISO model) and as an industry standard for

database management systems, respectively. It is of equal importance that we also

develop a standard for integrating heterogeneous database systems.

3.1 The importance of one model as a standard

Standards setting in the computer industry is a big issue. As processors get

faster. and microchips get smaller, new design decisions are made every day.

Unless standards are created these design decisions can be radically different from

one vendor's equipment to the other. For computer-based information systems to be

complete we must "standardize at the semantic level all of the discourses which are

essential to the design, inFLallation. and operation of [them]." [<Bachman> p. 47]

These standards should capture elements of present-day machines as well as

anticipated modifications to the current technology. "In the area of computers and

communications there are two principle functions of standards: compatibility and

variety reduction." [<Sirbu2> p.35) Compatibility functions are required for

computers of dissimilar architectures to work together: whether for the purpose of

resource sharing, information sharing, or electronic mail. Variety reduction

concerns reducing the number of different versions of a product. The more

N

N,'
1 31,, "0 % ,, ,.,:,



147.

0

restricted a market is, the more similar its products will be. Variety reduction

allows for a uniform conceptual point of view. Technology advances faster when all •

technologists speak the same language.

Like the two models presented in the Chapter 2, this model should not be

concerned with the particular implementation of the network or the databases

involved. Rather, it should be more general. so that it can connect to other

networks based on the same model but implemented differently. The particular

implementations chosen should be based on the underlying needs of the network.

not on any generalized model. Another reason for this is that future

implementations may be better suited for the network. Therefore, the network

should be capable of adapting to new implementations. If the model is based on a

particular implementation then it will not function properly when that

implementation is changed. The implementation must be customized to the

requirements of the system. This includes the requirements of both the

programmer and the user. This is recognized by the U. S. Air Force: "The CALS

[Computer Aided Logistics Support] architecture is ... unique do to the nature of the

program." [< U. S. Air Force > p. 31]

The importance of having no single standard for implementation is also

recognized by standards committees. For example, there exist several standards for

representing graphics on computer systems. There is a modular family of graphics .-'

standards [<Cuthbert> p. 41. This means that the implementor of a graphics N

system must recognize the needs of that specific system and choose the graphics

standard appropriate for that application. One system may need a large set of 5

textual fonts to be used with the graphics. while another might require less fonts I.

but a wider range of text sizes. Different implementations should be chosen to meet

the different needs. 5



148.

In light of this, the importance of developing a single model for integrating

heterogeneous database systems should be realized. It will serve several purposes.

It will make it easier to connect existing systems. It will make it even easier to

develop compatible databases in the future. Standardization efforts of the past

have dealt with connecting heterogeneous computers in a network, and developing

standard models for databases. Recent work in connecting heterogeneous databases A
necessitates development of a standard model. The next section will suggest the

author's view of how this model should be developed.

3.2 Deficiencies of the ISO OSI reference model

If the concern is to model the interconnection of heterogeneous databases,

then the models presented in Chapter 2 are of vital importance. Looking at each of

the models from this perspective on an individual basis. several pitfalls arise. This

does not mean that the models are faulty. It simply means that we cannot use

either one of the models alone to model integrating heterogeneous databases.

Reasoning for this is given below.

The goal of the ISO Open Systems Reference Model was "to make all

programs. data. and other resources available to anyone on the network without

regard to the physical location of the resource and the user." [<Tanenbaum2> p.

31 Its intention was to facilitate the interconnection of computers regardless of the

applications being run on them. "Techniques for interconnecting networks depend

on specific objectives." [<Pouzin> p. 241] This can also be applied to standards.

The ISO OSI did meet its objectives. It did make it easier to develop networks of

computers. There are some points that were overlooked by the model, however.

One deficiency of the ISO's Open System Interconnection model is that it

•0



standardizes two different kinds of network services, rather than one. The two

network services are called connection-oriented and connectionless. This is

primarily due to the debate over datagram service versus virtual circuit service.

The existence of these two standard services invites the unpleasant possibility of

two incompatible communications environments in OSI. The information systems

community has taken sides on this topic. This split comes from two different views

of how networks should be put together.

The connectionless network service is based on experience with experimental 0

networks, such a- the ARPAnet. In this' approach, each packet of data travels

through the network independently. It must carry with it the information

necessary to enable gateways to forward it correctly. Since the packets travel

independently, the network layer does not retain any relationship between them.

Packets may be lost. because of routing changes or congestion. In order to maintain

data integrity, a protocol must be run over the network layer that will resequence

or retransmit data.

The connection-oriented network service is more similar to a telephone
S

network. It corresponds to the service provided by X.25 networks. Using

connection-oriented network service, a connection must be established before data

can be sent to a particular destination. Once the users and the network all agree

on a connection. the data can be transmitted. The connection is broken after all

necessary data has been sent. This process preserves data integrity.

The existence of the two of these services presents a standardization problem.

The OSI Reference Model is designed such that particular implementation of

protocols is not considered. However, because there are fundamental differences

between connectionless and connection-oriented services, it would not be possible to

transparently convert between them within the network laver. If both services exist
"N



150.

0

and are each accepted by different groups, then products will be provided which 0

implement both. This would increase development and support costs, thereby

defeating the purpose of a standard.

There are several reasons why the undesirable existence of two different

network services is present in the reference model. When X.25 was developed in

1975, there was no reference model. However, the X.25 standard was the primary

inspiration for the OSI model. So the principles of X.25 were built-in to the

reference model. Therefore, the reference model had a bias towards connection-

oriented service. Many corporations already have substantial investments in X.25

networks. To abandon them would be a costly endeavor.

Why would a company want to give up its investments in X.25? This is

answered by the fact that connectionless service has more advantages. One

advantage is that connectionless services are easier to build because of the stability

of dynamic routing. Also, a transport layer protocol is always needed, and

connectionless service requires no additional traffic and little additional complexity

for the resequencing and retransmission functions. Another advantage is that

connectionless service does not require the considerable memory, processing power.

and network bandwidth necessitated by connection-oriented service. Finally,

connectionless operation is more similar to the dynamic traffic patterns generally

associated with computer networks.

Connection-oriented service does have the advantage thht flow control can be

more closely monitored then with connectionless service. However, the advantages

of connectionless service outweigh this.

The large number of options within protocols is a severe problem with the-V

OSI reference model. The result is that large numbers of potentially incompatible

% "



151.

combinations of protocols are created by different vendors prescribing to different

beliefs. Even if products are built to handle all of the possible combinations, the S

complexity of the software involved would inhibit the reliability of the product. It is

for this reason that I would endorse the use of connectionless network service in any

network using the ISO open systems reference model as a basis.

Another problem with the reference model is that it does not give any

standards for networking database management systems. It merely models

connecting the machines on which these systems reside. It does not make an.-
suggestions on how to connect the databases that exist on these machines. They all

fall under the applications layer. This is to broad of a generalization to design a

system after Therefore, it seems ftsible that a combination of the reference model

and the ANSI framework for databases would be necessary for interconnecting

heterogeneous databases. The next section will give reasoning as to why the ANSI

framework cannot be used alone to model such systems. 9

3.3 Deficiencies of the ANSI framework for databases

When the ANSI framework was developed, interconnection of heterogeneous

databases was not a topic of very much interest. The primary focus of the

ANSI/SPARC study group was in local databases resident on one machine.

Therefore, the model was developed with this in mind, It does do a good job of

representing local database management systems. However. it does not touch upon

the topic of connecting databases on different machines. Therefore. in achieving

this goal it seems as if the framework should be combined with the ISO reference

model.

%,
I 1- 1



152.

3.4 A suggestion for a single model

The author suggests that a single model for the integration of heterogeneous

database management systems should consist of a modified version of the ISO open

systems interconnection reference model. The reference model should be expanded

to allow for human-system interfaces. It should use the ANSI'SPARC database

model as inspiration. The ANSI.SPARC database model (as described in Chapter 2)

identifies three different human roles involved in database development. Similar

human roles should also be identified in the expanded ISO reference model. Figure S

3-1 represents the author's extended reference model for the integration of

heterogeneous databases.

3.4.1 Identif-ing Human Roles

The human roles of a system can be described by the responsibilities that they

hold. A set of responsibilities must be developed in order to identify the roles

necessary for the development of an integrated database management system.

These responsibilities should represent the tasks which must be performed for the

system to function properly, both on the network level and on each individual host.

These responsibilities must also take into account the objectives of database

management systems. Another responsibility of these human roles should be to

insure that hosts within an integrated system conform to the OSI reference model.

The human roles described next are represented in figure 3-1.

3.4.1.1 The System Administrator

It is quite clear that some kind of human management must preside over the

entire integrated system. The role of this system administrator would include -%

ensuring the reiiable operation of the network. independent of the status of each



153. 0

System

Administrator " "

Application 1 Application

Presentation H PresentationHost L Host
Session 4 Session

Trar'sport Admin. 4 P Admin. Transport
Network" 4 Network

Data Link .4 Data Link
Phsia ." Physical

physical media for Open Systems Interconnection

Figure 3-1: Extended reference model for integrating heterogeneous databases

individual host, at any given time. The system administrator should also be

responsible for maintaining the objectives of database management systems

between individual hosts. V

The most important of these objectives is data independence. Data e

independence makes changes to representation. formatting. organization. modeling.

or location invisible to the user. If data is to be exchanged between different hosts

then the database structures of both the sender and the receiver must be

% 8. '



154.

considered. While data independence does not include the capability of a database

management system to automatically cope with such changes, it should be the

responsibility of the system administrator to convey changes to hosts that are

affected by the changes. Data independence does not mean that changes are to be

avoided, but rather that a system be flexible to change. Change is inevitable. In

the development of a system, changes to the data should be anticipated. The

system administrator should maintain the system so that any changes can be

accommodated for, without major effort. 0

A database management system that provides data independence ensures

that applications can continue to run, perhaps at reduced performance, if the stored

data is reorganized in such a manner that other applications will run with better

performance. Such a database management system does not prevent one from

rewriting and retuning the old application to take advantage of the new changes

and enhance its performance.

The system administrator must also ensure that the system is capable of

adapting to other types of changes. One such example is the addition of new hosts

to the network. The system administrator must guarantee that new hosts can be

added and must also manage the addition of such hosts. New hosts must be

analyzed to see if they will be beneficial to the system. or if they will strain the
~0

system.

In order to guarantee the reliable operation of the system and that the

objectives of database management systems are met, the system administrator may

require some cooperation from each host in the network. There must be a human

role at each host who is responsible for communicating with the system

administrator.

%,1-7,V

-. .." P

55



155.

3.4.1.2 The Host Administrator

The responsibilities of the host administrator are two-fold. The host 0

administrator is responsible for communicating with the system administrator and N

for maintaining the reliable operation of the machine for which he is administrator.

The communication between the system administrator and the host

administrator is represented in figure 3-1 by the arrow between the two roles. The

host administrator must communicate with the system administrator in two

respects. He must report any changes being made to his machine that would affect

other hosts in the network. He must also identify any changes reported to him by

the system administrator that will affect his machine. After identifying such

changes he must ensure that the necessary modifications are made to accommodate

for the changes.

In addition to this. the host administrator must be able to identify any

changes to his database that could affect other users within the system. This

should be done in cooperation with the system administrator.

The role of the host administrator is similar to that of the enterprise

administrator in the ANSISPARC database model. He must identif information

use within his database. He must also identify what level of security is to be used

within the database. as well as the availability of the database to other users. The

host administrator must develop his database in such a way that it is easy to adapt

to changes to the system.

Another responsibility of the host administrator is to maintain consistency of

his machine with the ISO OSI reference model. This is represented in figure 3-1 by

the host administrator box overlapping all seven layers on each host. He must %

ensure that his machine is capable of interfacing with another at all levels of the

Oro.



156.

reference model. This means that he must be able to report the particular
implementation of any of the levels to the system administrator of the network in

such a fashion that a protocol can be established to make his machine compatible

with others in the network.

3.5 Conclusion

A model has been presented here in an attempt to model the integration of

heterogeneous databases. The author realizes that any system can be made to fit

the mold of any model. However, when developing a model one hopes to obtain a

balance between making broad generalities of all systems and being specific enough

to make the interface between two hosts easier to construct. It is the author's view S

the model presented here achieves this balance.

%

N

S %
*.1.

5D



A, , ,'7 l

157.

References

[ANSI 78] ANSI/X3/SPARC/Study Group - Database Management Systems. 0

Framework Report on Database Management Systems.
Technical Report, American National Standards Institute, 1978.

[Bachman 82] Bachman, Charles W. and Ross. Ronald G.
Toward a More Complete Reference Model of Computer-Based

Information Systems.
Computers & Standards 1, 1982.

[Brookes 82] Brookes, C. H. P., Grouse. P.J., Jeffery, D R., and Lawerence,
M. J.
Information Systems Design.
Prentice-Hall of Australia, 1982.

[Bussolati 81] Bussolati. U. and Martella. G.
Access Control and Management in Multilevel Database Models.
In Goos, G. and Hartmanis J. (editors), Trends in Information

Processing Systems. 3rd Conference of the European
Cooperation in Informatics. Springer-Verlag, Munich. ,-A.
October. 1981.

[Cuthbert 86] Cuthbert. Geraldine R.
Ada WIS Foundation Technologies GKS ADA Language Binding.
1986.

[Gligor 84] Gligor. Virgil D. and Luckenbaugh, Gary L.
Interconnecting Heterogeneous Database Management Systems.
Computer, January. 1984.

0
[Kallel 87] Kallel. Maher.

Standards for Data Exchange in an Integrated Environment: A
Methodological Approach.

1987.

[Metz 86] Metz, Richard.
Boeing's PC Practices.
Datamation . January, 1986.

[Pouzin 77] Pouzin. L.
Network Interconnection.
Future Networks - Infotech , 1977.

(Roberts 70] Roberts. L. G. and Wessler, B. D.
Computer Network Development to Achieve Resource Sharing.
SJCC. 1970.



158.
1S8.

[Sirbul 86] Sirbu, Marvin and Hughes, Kent.
Standardization of Local Area Networks.
Technical Report, Dept. of Engineering and Public Policy.

Carnegie Melon University, April, 1986.

[Sirbu2 851 Sirbu, Marvin and Stewart, Steven. 'I

Market Structure and the Emergence of Standards.
Technical Report. Dept. of Engineering and Public Policy. 1 _

Carnegie Melon University, April, 1985.

[Sirbu3 84] Sirbu, Marvin and Zwimpfer, Laurence E.
Standards Setting for Computer Communication: The Case of the

X.25.
IEEE Communications Magazine 23(3), 1984. 0

[Tanenbaum1 81 Tanenbaum. A. S.
Network Protocols.
ACM Computing Surveys 13(4), 1981.

[Tanenbaum2 811 Tanenbaum, A. S.
Computer Networks.
Prentice-Hall Inc.. 1981.

[U. S. Air Force 861
U.S. Air Force Plan for Implementation of Computer Aided
Logistics Support
Headquarters. Air Force Systems Command. Andrews AFB. DC

20334-5001. 1986.

[Whitaker 871 Whitaker, William A.
A Commentary on the WIS Ada Foundation Technology Studies.
1987.

0

% %

% % 0



159.
0

A TECHNICAL COMPARISON OF DISTRIBUTED
HETEROGENEOUS DATABASE MANAGEMENT SYSTEMS

SUBHASH BHALLA, B.E. PRASAD,
AMAR GUPTA, AND S.E. MADNICK

The intent of distributed, heterogeneous database management systems is to provide
a logically-integrated user-interface to physically non-integrated databases of
several different types. This process of integration encompasses concerted retrieval -

of information as well as coordinated transaction management. Because of the
added complexity involved in translating between multiple systems and multiple
data models, distributed heterogeneous database systems are more complex than
equivalent homogeneous ones.

In this technical report, eight different systems have been considered in detail.
These systems and the respective developing organizations are as under:

(i) ADDS, Amoco Oil Company; 0

(ii) ISS, Air Force:,
(iii) IMDAS, National Bureau of Standards;
(iv) MERMAID, Unisys;
(v) MRDSM, INRIA (France);
(vi) NDMS, CRAI (Italy);
(vii) MULTIBASE, CCA; and
(viii) PRECI, University of Aberdeen (Scotland).

Some of these systems are oriented for a particular computational environment, such
as manufacturing, while other systems are intended to be general purpose, While all
these eight systems are able to do global retrieves, their ability to perform global
updates is varied. The salient features of all the systems have been summarized in a
table. The report concludes with a list of areas requiring further research efforts.

-V...-"

TECHNICAL REPORT #5

%'P

., 



/t

0"

0

0

-

,, h ) S

1 '
at ,, j

,

"',1e _2



161.

0

A TECHNICAL COMPARISON OF I

DISTRIBUTED HETROGENEOUS DATABASE MANAGEMENT SYSTEMS 't
0

I. INTRODUCTION

The purpose of a distributed, heterogeneous database

management system (DBMS) is to access, aggregate and update

the information maintained in existing, distributed,

heterogeneous DBMSs through a single uniform interface

without changing preexisting (local) DBMSs and without

disturbing local operations [GLI86]. To provide such

services, within the constraints imposed by the existing set

of heterogeneous local DBMSs, the critical aspects are as

follows:

- Development of a Standard User Language and Data

Model; *," .

- Facilities for Query Processing;

- Incorporation of Distributed Transaction Management

Routines; and

- Support of Distributed Operating System Functions and

Network Services.

With the idea of gaining more insight into the above

issues, we have put together various approaches being

persued by researchers around the world. We have chosen a

set of eight representative prototypes. The salient features

of these eight systems are summarized in the following

paragraphs. S



162.

Distributed Heterogeneous Systems.

II. OVERVIEW OF SAMPLE PROTOTYPE SYSTEMS

The prototypes of Distributed Heterogeneous Database

Management Systems being assembled by various research teams

differ significantly from each other in terms of their

objectives and specific aims, and their design approach.

Some of the prototypes are intended for a specific

application, such as manufacturing, while others are general

purpose. They also make dissimilar assumptions, such as some

assume the existence of relational databases for future

systems, whereas others deal with multiple types of

databases. 'A'

The different systems, and their respective sets of

objectives and assumptions, are summarized below.

MULTIBASE

MULTIBASE is a software system developed by Computer

Corporatio, of America, Cambridge, Mass., for providing a

uniform, integrated interface for retrieving data from

several existing, heterogenous distributed databases [LAN

82], [SMI81]. The main objective of MULTIBASE is to answer

queries. It allows a user to reference data in heterogeneous
,. %%

databases, through a common query language, using a single

"- . " " € " W'  ,,' -, ," . r , ,r -." , .-,. ," ," ,,.'. -. " . ." - -.-.- ." ., , .... ..,.,... .. ,



163. 0

Distributed Heterogeneous Systems.

V

database description [DAY831, [GOL841.

The integrated access available through MULTIBASE does

not provide either the capability to update the data in the

local databases, or the ability to synchronize read

operations across several sites. To implement global

concurrency control mechanisms for read or update

operations, the global process must request and control

specific services offered by the local systems (e.g.,

locking local items). MULTIBASE has no provisions for

taking care of this type of activity.

The key objectives of MULTIBASE are: generality,

compatibility and extensibility. It has been designed to be

a general tool, without specific orientation towards any

particular application area. It allows existing

applications to operate without change. Also, it supports an

easy extension path for adding new local systems to expand

the existing MULTIBASE system configuration. The language

provided to global users by MULTIBASE is based on the

functional data model, and is called DAPLEX [SHI81]. DAPLEX

provides a conceptually natural, database interface

language. It uses constructs to model real world situations

which closely match the conceptual constructs a human being

might employ when thinking about those situations. .,.

The process global retrieval involves two main

Mmg~m&& =MX 0



16 4.

Distributed Heterogeneous Systems.

components. These are Global Data Manager (GDM), and Local

Database Interface (LDI). The functions of these two units

are summarized in a table later in this report. S

MULTIBASE employs a three level schema of definitions.

In all, MULTIBASE provides an integrated scheme for

- Uniform query access to dissimilar DBMS's;

- Local schema integration;

- Data incompatibility handling;

- Local query optimization, and

- Global query optimization.

INTEGRATED MANUFACTURING DATA ADMINISTRATION SYSTEM (IMDAS)

The IMDAS architecture is an experimental facility,

being implemented at the Automated Manufacturing Research

Facility of the National Bureau of Standards. This testbed

is intended to demonstrate the feasibility of supporting the

manufacturing and production environment for factories of

the future IBAR861, [LIB861. The focus is on various

functions related to manufacturing such as design, planning,

and control. The main objective is to achieve a high level

of software integration in an environment, consisting of
N



165.

Distributed Heterogeneous Systems.

engineering workstations, robots, and other machines, each

operating on an autonomous basis. Supplementary objectives

include

(a) Support for modular expansion, that is, support for

Network reconfiguration

(b) Effective resource utilization,

(c) Efficient processing of time critical transaction

and replication of data to support such activities.

Also, the goal of a Flexible Manufacturing System

implies use of adaptive control techniques whereby the

control system for such an environment is able to react to

failures and unexpected events.

The data model used by the prototype for IMDAS is SAM*, %

which contains a variety of data semantics [KR185], [SU 83].

It includes constructs for modeling the relationships among

the data found in engineering, commercial, scientific and

statistical databases. IMDAS supports three levels of new

definitions, to describe the mappings between the single

logical database and the multiple physically distributed

databases. This characteristic of IMDAS is common to most

heterogeneous distributed database management systems,

though the control typology visualized for IMDAS is

different from that of others.

A.: I



166.

Distributed Heterogeneous Systems.

In an Integrated Manufacturing System, a hierarchical

pattern of events is visualized. At the top (the total

facility) level, orders, process plans and part designs are

entered. At the equipment or machine level, sensory

information enters the system. A user or a control process

can express a transaction in the Global Data Manipulation

Language (GDML). The user process initiates a GDML query to

the global external view of the integrated database. To

process this query, IMDAS modifies the query tree so that

the query operation operates on the data defined in the

global conceptual view.

Between the centralized and distributed database

management architecture, IMDAS has chosen a hybrid approach.

IMDAS consists of three service layers, each of which is

responsible for a definite set of distributed data

management functions. These functions are distributed over

the component systems according to their computational

capabilities. The different layers of IMDAS software work

together in establishing, manipulating, and controlling the

distributed databases. For more details, please see table

comparing all the prototypes.

0
_ 2 " '2 .' .2 ' r, ,.." ". _. ." , %.-.' . . .".. - - - . ... ; .. ,-v.. .".-.. . ... "A" -



167. 0

Distributed Heterogeneous Systems.

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)

Integrated Information Support System (IISS) is a

system sponsored by the Wright-Patterson Air Force Base.

This system is being developed to support manufacturing and

logistics environments for the U.S. Air Force [IIS83]. Its

key design objectives are

(a) Using common data available within various

functionally independent subsystems through

definition, control and execution of actions

affecting information; S

(b) Supporting information resource management of

various application systems in a closed-loop

environment within manufacturing; and

(c) Accessibility from geographically dispersed

locations and support of future enhancements

The software integration is achieved by adopting a

three schema approach. These are : (i) External Schemas

(user views), (ii) Conceptual schema, and (iii) Internal S

schema. The conceptual schema employed is IDEF-Extended

which is an Entity-Relationship based model. All the three

schemata and the transformations among them are managed via S

I I I =%MI

6mm "a



168. 2

Distributed Heterogeneous Systems.

P

a three schema data dictionary, called the CDM (Common Data

model) subsystem. The CDM dictionary, is maintained as a

database that describes the conceptual schema and the

network environment. This resource (CDM) is maintaied in a

centralized fashion.

To process queries, query statements in DML within the

global schema (conceptual schema) are embedded in COBOL and

precompiled. On precompilation, source code files are sent

to their respective hosts for compilation. IISS permits 0

Integrated Application processes to occur along with Non-

Integrated Application processes. In case of an Integrated

Application process, a new application developed on IISS may

access data which is distributed on several databases. A

Non-Integrated application process may access a local DBMS

for retrieval and update activity. It is likely that global

update activity will be supported for Integrated Application

processes.

IISS uses LAN and wide area communication to provide

access to IBM 3081 (Network-IDMS), Honeywell level 6

(IDS/II), VAX (IDMS), and VAX (Relational - ORACLE).

Further, a Kernel known as Network Trasaction Manager (NTM)

has been implemented to provide sophisticated services on

the network, such as interprocess communication through

message passing. -UW

_-5- " ":k~f ' .'k' ",C-k ."Lw", .P,:,,Z i~r~e:. " " -" ,,' . ',,""., -- ':". ",-"-- ' ' ',,"z...... "., .,, - '"? "''



169.

Distributed Heterogeneous Systems.

PROTOTYPE OF A RELATIONAL CANONICAL INTERFACE (PRECI*)

A research prototype of a generalized distributed

database system called PRECI' is being developed at the

University of Aberdeen, in collaboration with a number of

research centers, mainly in Britain [DEE85]. The system is

fully decentralized, with both retrieval and update

facilities, permitting hetrogeneous and existing databases

to be specified as nodes. PRECI* is a research prototype

within the PRECI project.

PRECI" is a generalized DBMS based on a canonical data

model supporting relational, network and other data models

as user views IDEE81], [DEE84]. It uses extended ANSI/SPARC

architecture, its conceptual schema (called canonical

schema) being written in a relational form. The principal

data manipulation language includes an extended relational

algebra called PRECI algebraic language (PAL), which offers

a number of specific commands for data integration.

A nodal database in PRECI° is fully autonomous, with its

independent nodal DBMS (NDMS) and nodal external schema

(NES). The latter must provide a relational or PAL interface

to the Distributed Database which uses PAL as the standard



170.

Distributed Heterogeneous Systems.

language for communications. The PRECI* schema levels

include:

- GES (global external schema) which supports user

views.

- GDS (global database schema) which is formed by the

collection of PSs.

- PS (participation schema) which describes nodal data

with authorization controls

- NDS (inner) (nodal database schema)

- NDS (outer) (nodal database schema)

- NES (nodal external schema)

PRECI" permits participation of a node in one of the two

ways : ,. .

(i) an inner node, which contributes to the Global

Database Schema; and
0

(ii) an outer node.

If the number of nodes in a database is large, and the

expected frequency of usage for some of these is low, then

these nodes participate as outer nodes. This reduces the

overhead of creation of the GDS and GES for catering to

hundreds of nodes. Users are permitted to formulate queries 0

through a suitable language for specific nodes. ' '

Local data models supported in PRECI are accessed via a

relational (algebra) interface. The Local Database Schema

%

As kv



171.

N

Distributed Heterogeneous Systems. ,.

must be redefined to support relational algebra or PAL.

PRECI" allows global updates on base relations only. If the

data is replicated, update is performed only on the original

copy and broadcasted to other copies.

A DISTRIBUTED DATABASE SYSTEM (ADDS)

ADDS is a software system being developed by Amoco

Production Company. This system provides a uniform interface

to existing heterogeneous databases which are resident on

various nodes of a computer network [BRE84]. The conceptual

architecture of ADDS is capable of integrating relational,

network and hierarchical databases [BRE861. For specific oil

exploration and production projects, data is extracted from

the IMS databases, sent to the project location, merged with

the local data and stored locally in relational and pseudo-

relational databases, as a part of regular data extraction

and data merge operations. The user is provided with a

relational view of the integrated database and can formulate

queries using relational algebra operations over the

predefined set of relations.

The structure of the ADDS databases includes:

%

%.' -

,%.. A;



172.

0

Distributed Heterogeneous Systems.

- Physical Databases (PDBs) which are databases that

actually exist on a computer network node.

- Logical Databases (LDBs) which are Database Management

Systems for the associated PDBS.

- Composite Database (CDB) which contain a collective

view for a set of LDBs, that constitute a single

database, from the designer's point of view.

The CDB has a centralized ADDS directory, where ADDS schema

definition and CDB information is recorded. The directory is

maintained as a relational database allowing the user to

interactively access the directory and become familiar with

the various CDBs available for processing.

A query in ADDS is addressed to the CDB, which

translates it into subqueries addressed to local LDBs. Each

subquery is translated from the ADDS query language into the

query language and/or transactions of a specific DBMS. low

In addition to the data definition information, the

directory also contains the information used by the query

optimization process. The use of relational structures for

the directory provides flexible tools for maintaining the
N

5, %



173.

Distributed Heterogeneous Systems.

directory. The query language provides the user with not . ,

only a universal view (a relation of logical fields), but

also with a relational view, which expresses the CDB as a -

set of PDBCs and their logical fields. The reason for having

seperate relational and universal views of CDBs is to -.

provide a range of query capabilities for users of varying

sophistication.

MULTICS RELATIONAL DATA STORE MULTIBASEI(MRDSM)

MRDSM generalizes the MRDS relational database management

system of HONEYWELL, to support multiple databases. MRDSM is

being developed by INRIA (France). It operates on a

specialized domain of multiple MRDS relational databases

running on HONEYWELL systems [LIT85], [LIT861, [WON84]. It

is not a true heterogeneous system. Heterogenity is dealt at

the semantic level by providing uniform access to all

databases implemented with the same DBMS. The query language

is MDSL, which is SQL like. This language is an extended

version of DSL which is the data manipulation langage for

MRDS. le

A Global Schema does not exist in MRDSM as users can

create conceptual schema known as multischema with elements

7-7.

lb ,,

... ~ a ,i... . i.a- . . a .. .' .,.... . a. .. \.a .. , ~ %...% .



174. '

Distributed Heterogeneous Systems.

e4 '-

from Local database schemas. Multischema is also associated

with one or more Dependency Schemas to handle inter database I

dependencies.

A query on multischema is decomposed into queries on local

databases after removing inter-data dependencies that cannot

be handled locally. Then a working Database(DB) Schema is

created to collect data from different databases. The

collection process has been optimized. Finally queries are

generated on the working DB to combine data togather.

ARCHITECTURE FOR INTEGRATED DATA ACCESS (AIDA / MERMAID)

MERMAID is an integrated data access system being

developed by System Developement Corporation [TEM86b]. It

allows users of multiple databases (relational DBMSs),

running on different machines to manipulate data using a

common language, which is either ARIEL or SQL [MAC85],

[TEM86a], [YU 85].

The major processes of the MERMAID system are as under:

(a) The User Interface Process: It contains an embedded

ARIEL or SQL parser and a translator that produces

DIL(Distributed Intermediate Language).

(b) The Distributor Process: It contains an optimizer

Re

% % %*



175.-el

Distributed Heterogeneous Systems.

and the controller.

(c) One DBMS Driver Process for each database to be

accessed: This driver also contains a translator

from DIL to the DBMS query language.

All information about schemata, databases, users, host

computers, and the network is contained in a DD/D(Data

dictinary/Directory) which is centrally stored in a database

and accessed through a special driver. The translator and

optimizer access the DD/D in order to do translation and

query planning.

To process a query prepared by a user using ARIEL or

SQL, the translator parses and validates the query and

passes it to the distributor. The controller part of the

distributer reads the query in DIL and passes it to the

optimizer part which plans the exicution. The DIL query may

need to be decomposed into several subqueries and the

controller sends them to one or more DBMS drivers for

execution.

The DD/D contains information about the databases, the

users, the DBMSs, the host computers, and the network. It

supports the following four layers of schema definitions.

(a) Subschema layer: It represents the users view based

on the global schema.

(b) Global schema: It contains the federated view of -

Wr 4 V 'e 4- e*d ' 1



176.

Distributed Heterogeneous Systems.

all the data definitionsin the distributed global

schema.

(c) Distributed local schema: It repre&ents the

relational view of the local schema. .

(d) Local schema: This schema corresponds to the

external view of the local database.

The MERMAID integrated access system has been

implemented using VAX (IDM, Britton-Lee), SUN 170 (INGRES),

SUN 120(INGRES), and SUN 120(MISTRESS). Presently the system

permits updates to a single database on an individual

database basis.

MERMAID is an operatinal prototype which demonstrates

the feasibility of operating as a front-end to distributed

heterogeneous databases. A schema design tool is being

developed which supports the user in developing the global

view of the database from an existing schema.

NETWORK DATA MANAGEMENT SYSTEM ( NDMS ) g-'"
..

NDMS is a system being developed by CRAI (Italy) for the

National Transport Informatic System of Italy [STA841.

NDMS supports the relational data model. The relational

data model is supported as a view over various hetrogeneous

%

S-. . . . " " . " • . . f . f.- . .%. "" %t * " -



177.

Distributed Heterogeneous Systems.

data models, namely network, hierarchical and relational

data models. Relations pertaining to the respective levels

of view definition are materialized during query processing.

The view definition is organized hierarchically as a series

of data abstractions. The three distinct abstraction levels

are the NDMS Internal Schema, the Application schema and the

End-user Views.

The NDMS Internal Schema comprises of base relations

defined as aggregations over the local database Schemata.

The base relation definitions require data mappings to be

specified for each local database.

The NDMS network consists of logically interconnected

nodes. The NDMS node comprises of the System Encyclopedia

and the NDMS control software. The System Encyclopedia .. *

contains all information pertaining to the respective node,

that is, user definitions, database mapping definitions,

transaction definition etc., and the complete NDMS Internal

Schema Definition. •

The Node Data administrators responsible for NDMS

applications at each node define relational views, using the

SEQUEL view definition mechanism, as a collection of data

abstractions (aggregations and generalizations) over the .

NDMS internal schema. The NDMS version of SEQUEL has been

modified to handle the generalized abstractions. Defined

I
.. °,4%.



178.

Distributed Heterogeneous Systems.

relational views are available to the end-user for defining

their specific data abstractions.

The two basic transaction types supported by the NDMS

are the queued transactions and the on-line transactions.

The queued transactions are processed as local or remote

batch processes. No exchange of messages is permitted for

such transactions. The on-line transactions are considered

to be distributed transactions. The NDMS Transaction

Processor provides facilities to invoke transaction

programs, to support the user interface, to exchange

messages between application programs, and to synchronize

transaction commit operations. A System Journal to support

recovery mechanism exists.

We have described the major characteristics of eight

different efforts in the area of distributed heterogeneous

DBMSs. These eight systems were chosen on the basis of their

uniqueness and the level of technical information available

about these systems.

. .1 *

, , •" V "- , ."'''','v ." "..")''' v''. ........ . -'.-......... , .,'.



179.

Distributed Heterogeneous Systems.

III. COMPARISON OF SYSTEMS

In this section, we compare and contrast the different

approaches adopted by the eight representative systems.

A. UNIFORM INTEGRATED ACCESS IN DISTRIBUTED

HETEROGENEOUS DBMS

The task of providing Integrated Access for a

Distributed, Heterogeneous DBMS, involves providing a

Standard User Language and a Data Model. In addition, query

processing and query optimization in a distributed

environment also need to be incorporated.

The issue of providing a standard user language and a

standard data model is related to global data

administration. The basic components of integration are the

local DBMSs existing at user installations, which could b-

as varied as large mainframe based hierarchical-IMS at one

end and personal computer based DBASE-II relational database

on the other. The eight prototypes are geared to support

difterent sets of local data models. MULTIBASE, IISS, and

NDMS support DBMSs with relational and network data models

[GOL84], [IIS83], and [STA84]; IMDAS supports only
, A

VI



180. .,

Distributed Heterogeneous Systems.

relational local data models [LIB86]; ADDS supports both

relational and hierarchical local data models [BRE84]; and

PRECI* supports any model via relational algebra interface

[DEE85]. Finally the two remaining prototypes MERMAID and

MRDSM also support relational data models and other data

models through a relational interface.
0

In order to provide a uniform integrated access to a

system of heterogeneous DBMSs, a hierarchy of three

functional layers has been proposed [GLI84]. These three

layers are:

(a) The Global Data Management Service

(b) The Distributed Transaction Management Service

(c) Network Services.

The global data management (GDM) provides services directly

to the end user, as the top most layer. The functions

associated with GDM include (i) providing the global data

model supporting a global schema, which is the basis for

both the distributed DBMS user's view of the data and the

standard user language; (ii) query decomposition; (iii)

query translation; (iv) execution plan generation; and (v) .,.\

results integration.

The global data model mentioned above needs to capture

a

• " -' '-" " ., ', ,'a 4' ' ,' 4- a .-"-- . 1"--'



181.

Distributed Heterogeneous Systems.

the complete meaning of information stored at various

Distributed Databases, due to this constraint it is usually

defined by an entity relationship or semantic data model

[APP85]. It is also referred to as the Conceptual Schema.

All the data in the environment are defined in global

conceptual schema, which is mapped to many underlying file

and DBMS structures (referred to as internal schemata), and

many user views (referred to as external schemata). Most

prototypes for the Distributed, Heterogeneous DBMS adhere to

this three-schema approach to data integration. All the

three layers mentioned above fall under the application

layer of the ISO reference model [GLI84].

The current prototype of MULTIBASE supports a

Functional Data Model with an associated Data Manipulation

Language (DML), DAPLEX [SHI81]; IMDAS uses Semantic

Association Model (SAM*) and a SQL like query language [SU

831; IISS supports IDEF-Extended which is Entity-

Relationship based and queries are embedded in COBOL and

precompiled [IIS83]; PRECI* supports a Canonical Data Model M

with PAL (PRECI Algebraic Language) which is relational

algebra based [DEE841; other prototypes such as MERMAID,

ADDS and NDMS support Relational Global Data Models with

MRDSM using an extended relational global data model, the SI



182.

Distributed Heterogeneous Systems.

associated query languages for these prototypes are SQL like

or relational algebra based [TEM86b], 1LIT85], [BRE86], [STA

841.

The above data models are supported by very powerful

data definition languages (DDLs) that are used to define the

global conceptual schema in terms of objects, events and

also to specify integrity constraints on the relationships

and dependencies [APP 85). The conceptual to external (user

view) transformation is achieved through a global DML, that . y

is similar to relational algebra or extended relational

algebra as described above for most of the prototypes. The

conceptual schema to internal schema is the other

transformation required. This involves translation of both

structure and form for all the heterogeneous DBMSs included

in the system. Usually transformations of this type are

performed by software at each node and data are moved

through the network in the conceptual schema form. The three
S

levels of schemata for one of the prototypes, IMDAS, being

developed for automated factory environments, is shown in

Figure 1.

% %,"

%.,,.

111C % 1 N

11S



183.

(Many) global external views 4- "1 USERS

., .

S

Factory

(Single) global conceptual views Database

D",.taas

Physically ' ""

Fragment views partitioned or

(inner views; global conceptual Data) replicated
databases

across sites.

Figure 1: DBMS architecture for IMDAS, prototype distributed, heterogeneous DBMS for

factory automation.

-- I I.A I -- 1 1 A11 -- ' r % r )



184.

Distributed Heterogeneous Systems.

All the three schemata discussed above and the

transformations between them are managed via a three-schema

data dictionary. The existing databases use a two-schema

data dictionary which is designed for individual DBMSs only.

Most researchers are building their own three-schems data

dictionary, e.g., IISS has a CDM (Common Data Model)

subsystem [IIS83]. The CDM submodel consists of two software

modules : (i) the CDM dictionary, which is a database that

describes the conceptual schema and the network environment,

and (ii) the CDM proces;or which is the software, that

accesses the CDM dictionary and transforms user's data

requests into transactions that can be processed by the

local DBMSs. The DM processor is the distributed database

manager of IISS. For further discussion on Local Database

Schema conversion, Data incompatibilities and semantic
rmismatches and global schema construction, please see table

comparing all prototypes. Most prototypes maintain the data

dictionary as a centralized resource at one site and all

distributed database managers access this central data

dictionary. '.

QUERY PROCESSING AND QUERY OPTIMIZATION

The global query is fragmented into sub-queries by a

N N-
%



185. ,

Distributed Heterogeneous Systems.

query decomposer. It is a function normally performed by a

Global Data Manager (GDM), which uses the distributed (or

centralized, for some of the prototypes) data dictionary as

a guide. The query decomposition strategy of heterogeneous d.
M ;

systems does not differ from that of homogeneous systems *,". ,

[GL184]. However, in the case of heterogeneous systems , a

language-to-language translation is required to mitigate the

problem of data model differences. The query processing

steps for MULTIBASE systems are shown in Figure 2. These

include : language interface, global-to-local translation,

query decompostion, sub-query translation, execution plan

gencration, sub-query results interpretation and result

integration [DAY83].

Query optimization considers consideration of

processing queries and intersite processing. The "

Distributed, homogeneous DBMS such as R° and SDD-l provide

useful models for processing queries and query optimization

[APE83], [BER81], [DAN82], [YU 83]. -

B. DISTRIBUTED TRANSACTION MANAGEMENT.

Distributed Transaction Management (DTM) as a function M MM

involves controlling the execution of distributed

%5 %5

~ S M'. .. .



186. ,~

Result
DAPLEX -

Global
Query

DAPLEX Dt
single-site Manager query ?yY

Query

Formatted
Data4

0 0 Data-~

Local Local.A
Database 6Database '
T nterface Interface do )

Raw
Data Local

Query

Local Local
Host DMBS * *Host DMBSo0 0

Figure 2: MULTIBASE query processing.%

%?

N,0



NEhATINS DISTRIBUTED NOWNEES NOD NETENKEOUS /
DAM1651 PlTOTYPES VOLUNE M() MASSACHUSETTS INST OF

UNLRS f! OWTO ET ALL DEC 9? HIT-Kj/prii/1nnnrnrnrnniU.



0

L60

1(11111.012.0

1.2 1 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A



l1".

X

Distributed Heterogeneous Systems.

transactions in a Distributed, Heterogeneous environment.

The software system responsible for providing DTM services

must ensure that the consistency of the common shared data

is preserved, in view of the possibility of multiple

transactions accessing the same set of data as well as the

possibility of site failures. To achieve these objectives,

it becomes necessary to incorporate concurrency control and

recovery procedures into the environment [GLI84]. This is in

contrast to the case of Distributed Homogeneous systems,

where the problems of integrating concurrency and recovery %

procedures does not arise.

Most prototypes presently provide a retrieve only

interface to the Distributed, Heterogeneous DBMS. PRECI'

allows global updates to local DBMSs. In case of replicated

data, update is performed only on the original copy and

broadcasted to other copies. Prototypes such as IMDAS, IISS,

ADDS and NDMS are committed to solving the update problem.

The possibility of providing an additional layer of a

software system to cater to concurrency control and

recovery, without disturbing the existing heterogeneous

DBMSs, has shown some promise [MAD87]. In this approach,

transactions are classified as, those which issue updates

. .



188.

Distributed Heterogeneous Systems. . A

for other sites, and those which execute at the sites where

updates are required to be made. The DTM service interacts

with local DBMSs to implement the desired update activity.

Not much is known about the approaches being taken by the

research groups engaged on concurrency control and recovery

for the prototypes being discussed.

C. NETOWRK SERVICES

The problem of interconnecting resources in a --

heterogeneous environment can be tackled by adopting one of

two alternatives:

(1) Share services via a 'loosely-coupled'

network, and

(2) Share resources via a 'transparent' network.

In the case of a loosely-coupled network the basic

facilities supported are remote procedure call/message

passing, naming and access control. In addition there are

services like filing, mail transfer, and remote computation.

Most current prototypes for Distributed, Heterogeneous DBMSs

use network services that belong to this category.

In the case of transparent network services, k

distributed operating systems such as CRONUS developed by

Bolt Beranek and Newman, Inc. provide a level above host

bol '74,



189.

Distributed Heterogeneous Systems.

S

operating systems [SCH85] that appears to be a distributed

operating system to the application programs. This level

supports operating system functions including communication,

access control, naming, and data storage and retrieval

[TEM86a] [TEM86b]. This concept is also used in IISS which

offers an Operating System component called NTM (Network

Transaction Manager). The NTM is stated as an operating

system above the existing operating systems and supports the

application programs.

The Integrated Software architecture can be implemented

on one of the two network-services alternatives described

above. Most of the systems use services of existing type of 9

the loosely-coupled networks or build a layer of services on

top of the existing network services. For more details on

research prototypes of Distributed Operating Systems, please

refer [TAN85].

IV. KEY CHARACTERISTICS

The major features of all the eight prototype systems

are summarized in the following table. This table consists

of two parts. Part I contains details of four systems, and

Part II provides information regarding the other four

systems.

A

Mia m i 111 111''N IIII NI ' '40



19:1



w~ 0

0 (v.

0 m
o %Jc~ 0).O .

0) M

D M

.j ;a

E w. tA 0 w
&.C 0 - 0 _ %w....

z 5--- 1  co

+j ' CL 0)0

-~0-o

E a)c -_-0j~j

c 0. C:-

C z 0. 0
4CO1 C CC CO 6A o5C

-'~~~ ~ C c***

C~ - Ne >.

c + E E~
0 c c 0 c-A E

GJ0 'QV m.~-
-~k C L-~'

Z 00

E0  ~ 61% .. '

LU L- 0
Z) 6- %0 0~o IOW

c ~ w O(( Q-

E- tD 0 Z
E .2 %.

zu 0 u

0 0

6.



*E 
x

%A 0 0 ~ U-c E - c- 0

*c t.. Q). M C
M tJ IA < ~ - m

- 0 0 W0 E4 -C~4-

CLE ; 00 a - 6 

Zc~4~C: CL
0. E0

'o or', a.0

U - j : E .2

.z O' n- -9 +- %A -0&

4--

-# EU
Z % C '/- 0

0 i E (uU 0

E-0 00- -I

=-a 0 > 0-5 ID-c

:6 >



- w +1c 4 OT -

0 0-0 WE0 * a;
IIA '.PM W C' A C

- E E.m

U=00A 0) P

4A

w~ 0~ E) E
0= C

-nC W'

- ~ L CCEVm

00 0

< 0. 
-

SU..

o -C0
0)~~>% C MV~u C:

0 )(4.Q m0 'Vm
'o E ~ . c- 0) 63:~5~ r 0_a

-- 1-~ Q;
- Z -00 0 .E- E', c

zt0 c

- 0 ,. ,m

A M E S-0- 0
20 3 *%, o Lw



195.

-C -CD ELL; c 4-
m CL- m <.5z -0 ccIODtV

%AX*.AC f^~ +~- C>%O G

0.GDG W 4; 0.~ GD C -0GD

b-DG& %A CLG~GZ C 00mw0mwE

E-01~...~o D < 4- * 0-0C

W- -0 04-

-0 s-- &- c c
L. 0-j <

:3 M 04- D

~.J4- 0 -CD4

O - E oo~ -0* - -

c -L C _- 0M

MO MaE 41 O=EE GOL _

AC 0 a) GD C 0 0D w->~ D- 0.' C L--
'A t.) E4 Q

C0 GD -C :3G 44 4- 4-
GD- E u -

L, = a) mv (v C, - 00c

> - 0 0 V' 0 w CO 4-
0 m~

+-. 0 -04- CM L,

,M V 4 C: 4 (

CL 0

E g .

c M W 
tm

a* .4" m +%1U~ W +,
;6~~. E CC (-



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _196.

00
-. -- 0-~' C
4A :3 4- C

cO G- Z-U CO

4A Vi.j D V )- l a

- cC W, ' c 0 :cm-0 '

4 a) 0 0 4) 0 0

a, 'A 04C

0~( -: 002 C -r )

-0

>M' aai c
0l L m ;.

c -v ~, C '

m E c u -L. ze -

I-ow m wo -
+1~. E .-

Cu C >(uW

%A-

C A*



- 197. 0

C- *4 c uJ.

-C c w LA L

o.2 c( oU

- m ! .- 
$

~U.
LA 

,v

0 -C

-6

0-4 4

LA 
0

0 o 
0-

LU-.

w

o M

LA 4 _ > ,. -~

-~ 
+___ CM1 E5

LA " OW-0

M~ MA 
0 

%z- o w.
0.

Mrr4



198.

CI)

% .. kE.

Jilo



0<0

E EDZ

0 cocO 0 0

4-~ 0- (U Ul

00

Li 0 -

.14 >
0~ C-l: -

(U~0 _ ' Dr-

M 0C0 -

C,-r 00- (4

wo~ Li E 0 w(

Q -4
0U 0 0 o 0

M-. (U
C 4--

E - 0r - U - c O 0)

00 v (1 a)0 0- 00 4Al

0 0

W- 0) C 0cc
C0

c~~~- 00L4-~

2 U

0~ C)
CL WU 0 )

0

0U 0.



C ~ ~ C
0 4A *0c .2q

C - 0: m L 0 0 -LA -- 4- =

-E mc 0- __ ____ __ %

CL E c~m cm C

c~~ ~ ~ ~ E um cE0+

m. 0j 4  00 c -U-*

4-0 W-E o 'C t %A 4'
-L- M 'A-.DC E0Mc

.C~~*~ CLcaa4.*

0 . E o~o +C d -6. 0 -

0 u i 0 %A~M a- -ow-0CC
>-~~~J 0LJ M- -oU 0<Ao-

<L'WA

<0 'A c C 4 v %

W - t

0 -@ maE M-+,, S .. : + M



E c0

W E NCL-

00 L- C u

.0' %AE~ 0 . Uh. 4 E UE 100
-0 00101 A

6 > . C;- %A C n00~ 0EU r 4

> 4 l o c m E E U5U)

00 m C

-j-o
Eco &A W, E

E-0IASc4;%J o E C0-0 -WE 0 E.CA C 0 J\Ju 04-1 4
EU0 1 EU~~~~~~ EU EU E - 0  0 - =

A -C 'E 0 1.. (V O-e- . W _A- CL-
.2 0%~~ 4A Co #- E A 0I

72~~~ -o ccj-~ a

,>A. M 'W-iEEU 0U C O

Zo ~ 0 %A CAE

o4 M *14- % 01 M-U L.. M0 .. 0 1 U W

-- 00 h-C~t E 0E MC 0 E - Ms s
r %A w t EU 0~ CM E w

0 ~ E %aU E E u 0 EU0

0.-

+, W 0 0
W 3 W C Lo .



~ 0 0
ECmz c w ~ E mJ i 0

0 0

.c 0 E L - MA cr4 A

M .. r_ A %A - Cn c 0

mm cIM: M2 ~ 2 GJ. 0 ~ c0 aU 0 0 c
4., 0) 41 cCEr 2

0) C .0 0 43) D 0IM M C C CL

M. C 0 - -

0~ 0

_. 0 J~-

C =,a_ . E C L cm . 0 *0-

M M O V E m " O w -",A W - A M E-u-

C.E C v i V -0 0*-A

m~~~t~ mm w wo

._. b....,
0 0 -J~,~ C Em* 4o

in 4 :3 .2 v, vq CL &- M L T

4- 4-I -

.z ccz' V.- m o c 0 % w c 0 -o
.- 'D = 3: w .- D --- c 0.

> c0.
CUO

7 5 v, 0 0mc (u0 U 0 +

Lu;

E 0' - L 'DtO



Wi C C

C*~ 0+'

0.- C AC 0 CL

0, -u* -:>o

ol c

______0 ___ ____r-__E

CLoo

_M C := E_ 0.
%J DCO~ *x r

0 0 C

&- E

CO

00 '- Eo 0 t 2

--. ~C 0 > o 0) L

0 3 0 V % . 4

z )C W0>- u LC0M CC.
%A M M o 4 c ~~~~- r -r v(. MM Emom



- - 204.

co

2 ~ ~ cr M~~- ~-
co 4o

4~q~ai'C c

AU
0 aO E &AL

Lio c c qr-
cmw .- 1& L ,

M - -M ,Cc

E. c n

ri~ -J

-V CUMz -o W

00
*0 0 E +wz

C0 a)S

C -+ r-

-~ Q V.C cc cc

m 0o En-. E c M-c

D= (U ^4 \M .

o a)
IZu L

IA W 0

c 0



205.

Distributed Heterogeneous Systems.

V. RECOMMENDATIONS AND CONCLUSIONS

The intent of a Distributed, Heterogeneous Database

Management System is to provide a logically integrated user

interface to physically non-integrated, distributed,

hetrogeneous databases. This process of integration

encompasses retrieval of information as well as transaction

management for multisite updates.

In order to present a single logical database to the

user, a global schema is created. Operations on the global

schema are translated into corresponding operations on local

DBMSs. Creation of a global schema is difficult even when

the number of participating databases is small because of

several problems [LIT861. First, The architectures of the

local databases vary a great deal from each other [MAN83].

Second, semantic conflicts usually exist between local

DBMSs. If the local databases disagree about a value, there

may not be a single integrated value satisfactory to all

users. Finally, a single global schema may not be possible

when the number of local databases is large.

In the area of transaction management, a distributed,

heterogeneous database management system involves

Olt
V%



206.

Distributed Heterogeneous Systems.

incorporation of a concurrency control mechanism and a

recovery mechanism, both of which do not interfere with

existing mechanisms for local databases. Since one of the

objectives of a Distributed, Hetrogeneous DBMS is to provide

complete autonomy to local DBMS sites, any change to

existing mechanisms for concurrency control and recovery at

local DBMSs must be ruled out. A complete solution to the

maintenance of global consistency while permitting global-

updates, is an area that requires sustained effort !GLI84].

Further, adaptive control techniques must be employed to

deal with failures, to support time-critical transactions,

and to provide support for replication of information.

In our opinion, specific areas requiring further

research work are as follows:

1. Automatic tools for mapping, to cater to various S

data models, languages, query structures, and data

structures.

2. Semantic mapping.

3. System coordination, identification of overall

system components and their functions.

4. Query processing, and query optimization.

5. Distributed control over system resources.

6. Synchronization and recovery for multisite updates.

7. Fault tolerance/ failure resistance.

111 111 11 111 ,1 , 1 17 1% 10



207.

Distributed Heterogeneous Systems.

8. Data security.

9. Communication network services.

10. Modularity.

It appears that advances in broad research areas such as

Knowledge-based Engineering, Database Techniques, Computer

Graphics, and Distributed Operating Systems will continue to

influence and catalyze the growth of Distributed

Heterogeneous systems. Through sharing of ideas and

concepts, the next generation of distributed heterogeneous

database systems should become available in the near future.

V

I tN
S

'4 IC



208.
REFERENCES

0

[APE83] Apers, P.M.G., A.R. Henver, and S.B. Yao,

"Optimization Algorithms for Distributed Queries", IEEE

Transactions on Software Engineering, Jan. 83, pp. 57-68.

[APP85] Appleton, D. S., "The Technology of Data

Integration", Datamation, November 1, 1985, pp. 106-116. ,.

[BAR86] Barkmeyer, Edward, Mary Mitchell, K. P. Mikkilineni,

Stanley Y. W. Su, and H. Lam, "An Architecture for

Distributed Data Management in Computer Integrated

Manufacturing", NBSIR 86-3312, NBS, January 1986.

[BER81] Bernstein, P.A., N. Goodman, E. Wong, C.L. Reeve, and

J.B. Rothnie, "Query Processing in a System for Distributed

Databases (SDD-1)", ACM Trans. on Database Systems, Dec. 81,

pp. 602-625., .

[BRE84] Breitbart, Y. J. and L. R. Tieman, "ADDS-

Heterogeneous Distributed Database System", 3rd Int. Seminar

on Distributed Data Sharing Systems, Italy, March 1984,

Elsevier, North-Holland, 1985., pp. 7-24.

[BRE86] Breitbart, Y. J., P. L. Olson, and G. R. Thompson,
p;. ,'

"Database Integration in a Distributed Heterogeneous Database

System", IEEE Int. Conf. on Data Engineering, Los Angeles,

!11 Pi- KR, 11 -



209. >" \ ,

February, 1986, pp. 301-310. S

[BRO84] Brodie, M.L., "On the Development of Data Models",

in On Conceptual Modelling: Perspectives from Artificial

Intelligence, Databases, and Programming Languages,

M.L.Brodie, J.Mylopoulos, and J.W.Schmidt (Eds) Feb. 84.

[BR0861 Brodie M., "Database Management : A Survey", in

Knowledge Base Management Systems, M. L. Brodie and J.

Mylopoulos (Eds), Springer-Verlag, 1986.

[DAN82] Daniels, D.P., P. Selinger, L. Haas, B. Lindsay,

C. Mohan, A. Walker, and P. Wilms, "An Introduction to

Distributed Query Compilation in R*", Distributed Databases,

H.J. Schneider (Ed.), Sept. 82, pp. 291-309. S

[DAY831 Dayal, U., "Processing Queries over Generalization

Hierarchies in a Multidatabase System", Proc. of 9th Int.

Conf. on Very Large Databases, Italy, 1983.

[DEE81] Deen, S. M., et al, "The Design of a Canonical

Database (PRECI)", The Computer Journal, Vol. 24, No. 3,

1981.

[DEE84 Deen, S. M., R. R. Amin, and M. C. Taylor, "Query

Decomposition in PRECI*," 3rd Int. Seminar on Distributed

Data Sharing Systems, Italy, March 1984, Elsevier, North-

Holland, 1985., pp.92-103

• .



210.

[DEE85] Deen, S. M., R. R. Amin, G. 0. Ofori-Dwumfuo, and M.

C. Taylor, "The Architecture of a Generalised Distributed

Database System - PRECI*", Computer Journal, Vol. 28, No.

3,1985, pp. 282-290.

jGLI84I Gligor, V. D. and G. L. Lukenbaugh, "Interconnecting

Hetrogeneous Database Management Systems", Computer, January ,

1984, pp. 33-43.

(GLI86] Gligor, V. D. and R. Popescu-Zeletin, "Transaction

Management in Distributed Hetrogeneous Database Management

Systems" Information Systems, Vol. 11. No. 4, pp. 287-297,

1986.

[GOL841 Goldhisch, D., T. landers, R. L. Rosenberg and L.

Yedwab, "MULTIBASE System Administratior's Guide", Tech.

Rep., CCA, Cambridge, MA, November 1984.
0 e D 0

[IIS83] Integrated Information Support System (IISS) report,

"Integrated Computer-Aided Manufacturing (ICAM )", Materials

Laboratory, Air Force Systems Command, Wright-Patterson AFB,

February 1983.

IKRI85] Krishnamurthy, P., "A Data Manipulation Language for

the Semantic Association Model, SAM* ", Masters Thesis,

College of Engineering, University of Florida, Gainsville,

FL, 1985.

A

W mamlla&\



211.

[LAN82] Landers, T. and R. L. Rosenberg, "An Overview of

MULTIBASE", Second Symp. Distributed Database, Berlin, Sept.

1982, North-Holland, New york, 1982, pp. 311-366.

[LIB861 Libes, Don and Ed Barkmeyer, "IMDAS - An Overview",

Draft Report, Integrated Systems Group, NBS, Gaithersburg,

MD, 1986.

[LIT85] Litwin, W., "An Overview of the Multidatabase System

MRDSM,"ACM National Conf., Denver, october 1985.

.4

[LIT861 Litwin, W. and Abdelaziz Abdellatif, "Multidatabase

Interoperability,", Computer, December 1986, pp. 10-18.

[MAC85] MacGregor, R., "ARIEL - A Semantic Front-End to

Relational DBMSs", in Proc. of VLDB, August 1985.

[MAD871 Madnick, S.E., et al, "Concurrecy Control and

Recovery in Distributed, Hetrogeneous Database Management

Systems., working paper, 1987. * *

tMAN83] Manola, F.A., "Model to Model Mappings and Conversion

in a Family of Data Model Specifications", Computer

Corporation of America report No. CCA-83-14, Dec. 83.

[SHI81] Shipman, D., "The Functional Data Model and the Data

Language DAPLEX", ACM Trans. on Database Systems, March 1981.
M



[SMI81] Smith, J. M. et. al., "Multibase - Integrating

Heterogeneous Distributed Database Systems", Proc. of AFIPS,

Vol. 50, 1981, pp. 487-499.
0

[STAB4] Staniszkis, W. Kaminski, M. Kowalewski, K. Krajewski,

S. Mezyk, and G. Turco, "Architecture of the Network Data

Management System," 3rd Int. Seminar on Distributed Data

Sharing Systems, Italy, March 1984, Elsevier, North-Holland,

1985., pp. 57-74.

ISU 83] Su, Stanley, "SAM* : A Semantic Association Model for

Corporate and Scientific-Statistical Databases", Information

Sciences, Vol. 29, 1983, pp. 151-199.

[TAN85] Tanenbaum, A.S., and R. V. Renesse, "Distributed

Operating Systems", Computing Surveys, vol. 17, No. 4, Dec.

85.

(TEM86a] Templeton, M., D. Brill, A. Chen, S. Dao, and E.

Lund, "MERMAID - Experiences With Network Operation,", IEEE %

Int. Conf. on Data Engineering, Los Angeles, February 1986,

pp. 292-300.

(TEM86b] Templeton, M. et. al., "MERMAID - A Front-end to

Distributed Heterogeneous Databases", Report, System .- ,

% I I
Development Corporation, Santa Monica, CA., 1986

'P I"a,



213.

[WON84] Wong, K. K. and P. Bazex, "MRDSM: A Relational S

Multidatabases Management System", 3rd Int. Seminar on

Distributed Data Sharing Systems, Italy, March 1984,

Elsevier, North-Halland, 1985, pp 77-85. S

[YU 83] Yu, C.T. and C.C. Chang, "On the Design of a Query

Processing Strategy in a Distributed Database Environment",

Proc. of ACM SIGMOD, 1983, pp. 30-39.

(YU 851 Yu, C, C. Chang, M. Templeton, D. Brill, and E.

Lund, "Query Processing in a Fragmented Relational

Distributed System: MERMAID,", IEEE Trans. on Software .I\ '

Engineering, August 1985.

0

0
'. or

,,,% V %

%% %'%

pN



uL' ui~U7Wl KA n~ nM,~x 1~ ~~ ~W~ fl hi W! I ~i!U V N~ ~d .% ,~ -. ~~- .~,,. - .. .~. -21414

BIBLIOGRAPHY rt

[APP86a) Appleton, D. S., "Very Large Projects", Datamation,

January 15, 1986, pp. 63-70.

[APP86b] Appleton, D. S., "Information Asset Management",

Datamation, February 1, 1986, pp. 72-76.

[APP86c] Appleton, D. S., "Rule-Based Data Resource

Management", Datamation, May 1, 1986, pp. 86-99.

IBRE84] Breitbart, Y. J., L. F. Kemp, G. R. Thompson, A.

Silberschatz, "Performance Evaluation of a Simulation Model

for Data Retrieval in a Heterogeneous Database Environment",

Proc. of IEEE, Trends & Applications 1984, pp. 190-197.

[BRE85] Breitbart, Y. and P. Paolini, "The Multibase

Session", in Distributed Data Sharing Systems, F. A.

Schreiber and W. Litwin (Eds.) Elsevier (Nortk--Holland),

1985, pp. 3-6.

[CAR85] Cardenas, A.F., and Wang, G.R., "Translation of

SQL/DS Data Access/update into Entity-relationship Data

Access/update", Proc. of the 4th IEEE Intl. Conf. on Entity-

Relationship Approach, Oct. 85.

[CAR86I Cardenas, A.F., "Hetrogeneous Distributed Data Base

I L' -% 4

* ~ - l



215. *

Management The HD-DBMS", Submitted for Publication, Oct. 86. ,, ,o

[CHI841 Chimia, J. L., "Query Decomposition in a Distributed

Database System Using Satellite Communications", 3rd Int. -

Conf. on Distributed Data Sharing Systems, Italy, March 1984,.4

Elsevier (North-Holland), pp. 105-118.

[CHU861 Chung, L. V., M. D. Yanike, E. J. Johnson and E. J.

Byrne, "Design and Implementation of a Relational Database

Server In a Hetrogeneous Network Environment", IEEE Int.

Conf. on Data Engineering, Los Angels, California, FEB. 5-7,

1986, pp. 685-692.

[ELM841 Elmasri, R., and Navathe, S., "Object Integration in

Logical Database Design", Proc. of Intl. Conf. on Data

Engineering, Apr. 84, pp. 426-433.
W

[ELM86] Elmasri, R., Larson, J. and Navathe, S., "Schema

Integration Algoz-iths for Federated Databases and Logical

Database Design", Dept. of Computer Sc., University of .

Houston, Houston, TX 77004. %

[GLI85J Gligor, V. D. and R. Popescu-Zeletin, "Concurrency

Control Issues in Distributed Hetrogeneous Database

Management Systems", 3rd Int. Seminar on Distributed Data

Sharing Systems, Italy, March 1984, Elsevier, North-Holland,

1985, pp 43-56.

%P

s'J



216.

[HEI85] Heimbigner, D., and McLeod, D., "A Fedrated

Architecture ffor Information Management", ACM Trans. on

Office Information Systems, Vol. 3, No. 3, July 85, pp. 253-

278.

[KEL86] Keller, A.M., "The Role of Semantics in Translating

View Updates", Computer, IEEE magzine, Jan. 86.

[KIM81] Kimbleton, S. R. and P. Wang, "Applications and V

Protocols", Distributed Systems: Architecture and

Implementation, Lecture Notes in Computer Science, Paul,

Lampson and Siegert, (eds.) Vol. 105, Springer Verlag, New

York, 1981, pp. 308-370.

[LEF84I Lefons, E., and A. Silvestri, "The Use of

Multidatabase in Decision Support Systems", Proc. of the 3rd

Intl. Seminar on Disrtibuted Data Sharing Systems, Italy,

March 84, Elsevier, North-Holland, 1985.

[LIT821 Litwin, W. et al. "SIRIUS Systems for Distributed

Data Management", in Distributed Data Bases, H. J. Schneider

(ed), North-Holland, 1982, pp. 311-366.

[LOG81] Leveson, N. G. and A. I. Wasserman, "Logical

Decentralization and Semantic Integrity in a Distributed

Information System", 2nd. Intl. Seminar on Distributed Data .,

Sharing Systems, Netherlands, June 1981, Elsevier (North-' w

Holland), 19 82 , pp. 243-253.

nf ' %=,' %



[LYN83] Lyngbaek, P., and McLeod, D., "An Approach to Object

Sharing in Distributed Database Systems", Proc. of 9th Intl.

Conf. on Very Large Data Bases, Oct. 83.

[NAV84] Navathe, S.B., Shashidhar, T., and Elmasri, R.,

"Relationship Merging in Schema Integration", Proc. of 10th

Intl. Conf. on Very Large Data Bases, Aug. 84, pp. 78-90.

[NAV86] Navathe, S., Elmasri, R., and Larson, J.,

"Integrating User Views in Database Design", Computer, IEEE

Magzine, Jan. 86.

[PRA86] Pratt, S. J., "The Alchemy Model: A Model for

Homogeneous and Hetrogeneous distributed Computing System",

Operating Systems Review, Vol. 20, No. 2, April 1986, pp. 25-

37.

[SPA8l] Spaccapietra, S., B. Demo, A. Di Leva, C. Parent, C.

Perez De Celis and K. Belfar, "An Approach to Effective

Hetrogeneous Databases Cooperation", 2nd Int. Seminar on

Distributed Data Sharing Systems, Netherlands, June 1981,

Elsevier (North-Holland), 1982, pp. 209-218.

[TOJ851 Tojo, A. and T. Sato, "Interoperable Database System:

A New R&D Project and Its Impact on Multimedia Information

Processing Technology", IEEE Workshop on Computer

Architecture for Pattern Analysis and Image Database



218.
Management, Miami, FL, November, 1985, pp 336-339.

[WIE86a] Wiederhold, G., and XiaoLei Qian, "Modeling

Asynchrony in Distributed Databases", invited paper, Computer

Science Department, Stanford University, Stanford, CA 94305,

USA., 1986.

[WIE86b] Wiederhold, G., "Views, Objects, and Databases",

Manuscipt submitted, Computer Science Department, Stanford

University, Stanford, CA 94305, Oct. 86.

0
.

#K

WIMMUM -0

#: - 'W. e0



NIVI1

//ft


